Counting rational points on smooth cubic curves

Manh Hung Tran
Department of Mathematical Sciences, Chalmers University of Technology, Sweden

A R T I C L E I N F O

Article history:

Received 26 October 2016
Received in revised form 6 December 2017
Accepted 7 December 2017
Available online xxxx
Communicated by A. Pal

Keywords:

Cubic curves
Rational points
Counting function
Elliptic curves
Global determinant method
Descent

A B S T R A C T

We use a global version of Heath-Brown's p-adic determinant method developed by Salberger to give upper bounds for the number of rational points of height at most B on non-singular cubic curves defined over \mathbb{Q}. The bounds are uniform in the sense that they only depend on the rank of the corresponding Jacobian.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let $F\left(X_{0}, X_{1}, X_{2}\right) \in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}\right]$ be a non-singular cubic form, so that $F=0$ defines a smooth plane cubic curve C in \mathbb{P}^{2}. We want to study the asymptotic behaviour of the counting function

$$
N(B)=\sharp\{P \in C(\mathbb{Q}): H(P) \leq B\},
$$

with respect to the naive height function $H(P):=\max \left\{\left|x_{0}\right|,\left|x_{1}\right|,\left|x_{2}\right|\right\}$ for $P=\left[x_{0}, x_{1}, x_{2}\right]$ with co-prime integer values of x_{0}, x_{1}, x_{2}.

[^0]https://doi.org/10.1016/j.jnt.2017.12.001
0022-314X/@ 2018 Elsevier Inc. All rights reserved.

It is known that if the rank r of the $\operatorname{Jacobian} \operatorname{Jac}(C)$ is positive, then we have

$$
\begin{equation*}
N(B) \sim c_{F}(\log B)^{r / 2} \tag{1}
\end{equation*}
$$

as $B \rightarrow \infty$. This result was shown by Néron. Moreover, if $r=0$ then $N(B) \leq 16$ by Mazur's theorem (see Mazur [5], Theorem 8) on torsion groups of elliptic curves. But (1) is not a uniform upper bound as the constant c_{F} depends on C. The aim of this paper is to give uniform upper bounds for $N(B)$ which only depend on the rank of $\operatorname{Jac}(C)$.

In this direction, Heath-Brown and Testa (see [4], Corollary 1.3) established the uniform bound

$$
\begin{equation*}
N(B) \ll(\log B)^{3+r / 2} \tag{2}
\end{equation*}
$$

by using the p-adic determinant method developed by the first author (see [3]). In [4], they also used a result of David [1] about the successive minima of the quadratic form given by the canonical height pairing on $\operatorname{Jac}(C)$ to prove the sharper uniform bounds $N(B) \ll(\log B)^{1+r / 2}$ for all r and $N(B) \ll(\log B)^{r / 2}$ if r is sufficiently large.

We shall in this paper give a direct proof of the bound

$$
\begin{equation*}
N(B) \ll(\log B)^{2+r / 2} \tag{3}
\end{equation*}
$$

based on the determinant method, which does not depend on any deep result about the canonical height pairing.

To do this, we follow the approach in [4] with descent. But we replace the p-adic determinant method by a global determinant method developed by Salberger [6]. The main result of this paper is the following

Theorem 1. Let $F\left(X_{0}, X_{1}, X_{2}\right) \in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}\right]$ be a non-singular cubic form, so that $F=0$ defines a smooth plane cubic curve C. Let r be the rank of $J a c(C)$. Then for any $B \geq 3$ and any positive integer m we have

$$
N(B) \ll m^{r}\left(B^{\frac{2}{3 m^{2}}}+m^{2}\right) \log B
$$

uniformly in C, with an implied constant independent of m.

This bound improves upon the estimate

$$
N(B) \ll m^{r+2}\left(B^{\frac{2}{3 m^{2}}} \log B+\log ^{2} B\right)
$$

in [4] (see Theorem 1.2). Taking $m=1+[\sqrt{\log B}]$ we immediately obtain the following result.

https://daneshyari.com/en/article/8896875

Download Persian Version:

https://daneshyari.com/article/8896875

Daneshyari.com

[^0]: E-mail address: manhh@chalmers.se.

