Universal sums of generalized octagonal numbers

Jangwon Ju ${ }^{\text {a,*,1 }}$, Byeong-Kweon Oh ${ }^{\text {a,b,2 }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea
${ }^{\text {b }}$ Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

A R T I C L E I N F O

Article history:

Received 28 April 2017
Received in revised form 28
September 2017
Accepted 8 December 2017
Available online xxxx
Communicated by M. Pohst

$M S C$:

11E12
11E20
Keywords:
Lagrange's four square theorem
Generalized octagonal numbers

A B S T R A C T

An integer of the form $P_{8}(x)=3 x^{2}-2 x$ for some integer x is called a generalized octagonal number. A quaternary $\operatorname{sum} \Phi_{a, b, c, d}(x, y, z, t)=a P_{8}(x)+b P_{8}(y)+c P_{8}(z)+d P_{8}(t)$ of generalized octagonal numbers is called universal if $\Phi_{a, b, c, d}(x, y, z, t)=n$ has an integer solution x, y, z, t for any positive integer n. In this article, we show that if $a=1$ and $(b, c, d)=(1,3,3),(1,3,6),(2,3,6),(2,3,7)$ or $(2,3,9)$, then $\Phi_{a, b, c, d}(x, y, z, t)$ is universal. These were conjectured by Sun in [10]. We also give an effective criterion on the universality of an arbitrary sum $a_{1} P_{8}\left(x_{1}\right)+a_{2} P_{8}\left(x_{2}\right)+\cdots+a_{k} P_{8}\left(x_{k}\right)$ of generalized octagonal numbers, which is a generalization of "15-theorem" of Conway and Schneeberger.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The famous Lagrange's four square theorem states that every positive integer can be written as a sum of at most four integral squares. Motivated by Lagrange's four

[^0]https://doi.org/10.1016/j.jnt.2017.12.014
0022-314X/® 2018 Elsevier Inc. All rights reserved.
square theorem, Ramanujan provided a list of 55 candidates of diagonal quaternary quadratic forms that represent all positive integers. In [4], Dickson pointed out that the quaternary form $x^{2}+2 y^{2}+5 z^{2}+5 t^{2}$ that is included in Ramanujan's list represents all positive integers except 15 and confirmed that Ramanujan's assertion for all the other 54 forms is true. A positive-definite integral quadratic form is called universal if it represents all non-negative integers. The problem on determining all universal quaternary forms was completed by Conway and Schneeberger. They proved that there are exactly 204 universal quaternary quadratic forms. Furthermore, they proved the so called " 15 -theorem", which states that every positive-definite integral quadratic form that represents $1,2,3,5,6,7,10,14$ and 15 is, in fact, universal, irrespective of its rank (see [1]). Recently, Bhargava and Hanke [2] proved the so-called, "290-theorem", which states that every positive-definite integer-valued quadratic form is universal if it represents
\[

$$
\begin{aligned}
& 1,2,3,5,6,7,10,13,14,15,17,19,21,22,23,26,29, \\
& 30,31,34,35,37,42,58,93,110,145,203, \text { and } 290 .
\end{aligned}
$$
\]

Here a quadratic form $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leqslant i, j \leqslant n} a_{i j} x_{i} x_{j}\left(a_{i j}=a_{j i}\right)$ is called integral if $a_{i j} \in \mathbb{Z}$ for any i, j, and is called integer-valued if $a_{i i} \in \mathbb{Z}$ and $a_{i j}+a_{j i} \in \mathbb{Z}$ for any i, j.

In general, a polygonal number of order m (or an m-gonal number) for $m \geqslant 3$ is defined by

$$
P_{m}(x)=\frac{(m-2) x^{2}-(m-4) x}{2}
$$

for some non-negative integer x. If we admit that x is a negative integer, then $P_{m}(x)$ is called a generalized polygonal number of order m (or a generalized m-gonal number). Then, Lagrange's four square theorem implies that the diophantine equation

$$
P_{4}(x)+P_{4}(y)+P_{4}(z)+P_{4}(t)=n
$$

has an integer solution x, y, z and t, for any non-negative integer n.
Recently, Sun in [10] proved that every positive integer can be written as a sum of four generalized octagonal numbers, which is also considered as a generalization of Lagrange's four square theorem. He also defined that for positive integers $a \leqslant b \leqslant$ $c \leqslant d$, a quaternary sum $a P_{8}(x)+b P_{8}(y)+c P_{8}(z)+d P_{8}(t)$ (simply, $\left.\Phi_{a, b, c, d}(x, y, z, t)\right)$ of generalized octagonal numbers is universal over \mathbb{Z} if the diophantine equation

$$
\Phi_{a, b, c, d}(x, y, z, t)=a P_{8}(x)+b P_{8}(y)+c P_{8}(z)+d P_{8}(t)=n
$$

has an integer solution for any non-negative integer n. Then, he showed that if $\Phi_{a, b, c, d}$ is universal over \mathbb{Z}, then $a=1$, and (b, c, d) is one of the following 40 triples:

https://daneshyari.com/en/article/8896910

Download Persian Version:

https://daneshyari.com/article/8896910

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jjw@snu.ac.kr (J. Ju), bkoh@snu.ac.kr (B.-K. Oh).
 ${ }^{1}$ The work of the first author was supported by BK21 PLUS SNU Mathematical Sciences Division.
 ${ }^{2}$ The work of the second author was supported by the National Research Foundation of Korea (NRF2017R1A2B4003758).

