Bilinear forms with exponential sums with binomials

Kui Liu ${ }^{\text {a }}$, Igor E. Shparlinski ${ }^{\text {b }}$, Tianping Zhang ${ }^{\text {c,* }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Qingdao University, No. 308, Ningxia
Road, Shinan, Qingdao, Shandong, 266071, PR China
${ }^{\text {b }}$ Department of Pure Mathematics, University of New South Wales, Sydney, NSW
2052, Australia
${ }^{c}$ School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710019 Shaanxi, PR China

A R T I C L E I N F O

Article history:

Received 29 October 2017
Received in revised form 12
December 2017
Accepted 19 December 2017
Available online xxxx
Communicated by S.J. Miller

MSC:

11D79
11L07
Keywords:
Binomial sums
Cancellation
Bilinear form

A B S T R A C T

We obtain several estimates for bilinear forms with exponential sums with binomials $m x^{k}+n x^{\ell}$. In particular we show the existence of nontrivial cancellations between such sums when the coefficients m and n vary over rather sparse sets of general nature.
© 2018 Published by Elsevier Inc.

[^0]https://doi.org/10.1016/j.jnt.2017.12.011
0022-314X/® 2018 Published by Elsevier Inc.

1. Introduction

1.1. Background and motivation

For a positive integer q, we denote by \mathbb{Z}_{q} the residue ring modulo q and also denote by \mathbb{Z}_{q}^{*} the group of units of \mathbb{Z}_{q}.

For fixed integers k and ℓ, we consider exponential sums with binomials

$$
S_{k, \ell, q}(m, n)=\sum_{x \in \mathbb{Z}_{q}^{*}} \mathbf{e}_{q}\left(m x^{k}+n x^{\ell}\right)
$$

where for negative powers of x are computed modulo q and

$$
\mathbf{e}_{q}(z)=\exp (2 \pi i z / q)
$$

The case $(k, \ell)=(1,-1)$ corresponds to the case of Kloosterman sums. We note that when both k and ℓ are positive there is no reason to restrict the summation to \mathbb{Z}_{q}^{*}. However, motivated by the choice $(k, \ell)=(-2,1)$ which is important for applications to square-free numbers in progressions, see [13] we only consider this case. It is also important for the validity of the bound (1.3) below.

Furthermore, given two sets $\mathcal{M}, \mathcal{N} \subseteq \mathbb{Z}_{q}$ and two sequences of weights $\boldsymbol{\alpha}=\left\{\alpha_{m}\right\}_{m \in \mathcal{M}}$ and $\boldsymbol{\beta}=\left\{\beta_{n}\right\}_{n \in \mathcal{N}}$, we define the following bilinear forms with the binomial sums $S_{k, \ell, q}(m, n)$:

$$
\mathcal{S}_{k, \ell, q}(\boldsymbol{\alpha}, \boldsymbol{\beta} ; \mathcal{M}, \mathcal{N})=\sum_{m \in \mathcal{M}} \sum_{n \in \mathcal{N}} \alpha_{m} \beta_{n} S_{k, \ell, q}(m, n) .
$$

We also consider the following special cases

$$
\begin{align*}
\mathcal{S}_{k, \ell, q}(\boldsymbol{\alpha} ; \mathcal{M}, \mathcal{N}) & =\mathcal{S}_{k, \ell, q}\left(\boldsymbol{\alpha},\{1\}_{n \in \mathcal{N}} ; \mathcal{M}, \mathcal{N}\right) \\
& =\sum_{m \in \mathcal{M}} \sum_{n \in \mathcal{N}} \alpha_{m} S_{k, \ell, q}(m, n) \tag{1.1}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{S}_{k, \ell, q}(\mathcal{M}, \mathcal{N}) & =\mathcal{S}_{k, \ell, q}\left(\{1\}_{m \in \mathcal{M}},\{1\}_{n \in \mathcal{N}} ; \mathcal{M}, \mathcal{N}\right) \\
& =\sum_{m \in \mathcal{M}} \sum_{n \in \mathcal{N}} S_{k, \ell, q}(m, n) \tag{1.2}
\end{align*}
$$

For $(k, \ell)=(1,-1)$, that is, for Kloosterman sums, such bilinear forms have been introduced by Fouvry, Kowalski and Michel [3] who have also demonstrated the importance of estimating them beyond of what follows immediately from the Weil bound of Kloosterman sums (see, for example, [7, Chapter 11]), that is, better than the bound (1.3) below.

https://daneshyari.com/en/article/8896918

Download Persian Version:

https://daneshyari.com/article/8896918

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: liukui@qdu.edu.cn (K. Liu), igor.shparlinski@unsw.edu.au (I.E. Shparlinski), tpzhang@snnu.edu.cn (T.P. Zhang).

