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From the product of two elliptic curves, Shioda and Inose 
[6] constructed an elliptic K3 surface having two II∗ fibers. 
Its Mordell–Weil lattice structure depends on the morphisms 
between the two elliptic curves. In this paper, we give a 
method of writing down generators of the Mordell–Weil 
lattice of such elliptic surfaces when two elliptic curves are 
3-isogenous. In particular, we obtain a basis of the Mordell–
Weil lattice for the singular K3 surfaces X[3,3,3], X[3,2,3] and 
X[3,0,3].

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the study of the geometry, arithmetic and moduli of K3 surfaces, elliptic K3
surfaces with large Picard number play a vital role. In 1977 Shioda and Inose [6] gave a 
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classification of singular K3 surfaces, that is, K3 surfaces with maximum Picard number. 
For this purpose, they constructed elliptic K3 surfaces E with two singular fibers of type 
II∗ starting from the Kummer surface Km(E1 × E2) with the product of two elliptic 
curves E1 and E2. They constructed E as a double cover of Km(E1 × E2) with certain 
properties (now called a Shioda–Inose structure). Later, Inose [1] gave an explicit model 
of such an elliptic K3 surface as a quartic surface in P3, and remarked that it is the 
quotient of Km(E1 × E2) by an involution. We call the Kodaira–Néron model of E the 
Inose surface associated with E1 and E2, and denote it by Ino(E1, E2). We thus have a 
“Kummer sandwich” diagram:

Km(E1 × E2)
π2��� Ino(E1, E2)

π1��� Km(E1 × E2)

(cf. [7]). Also, E as an elliptic surface with two II∗ fibers is denoted by F (1)
E1,E2

. This 
notation reflects that it is a part of the construction of elliptic K3 surfaces of high rank 
by the first named author [4], where he constructed F (n)

E1,E2
, n = 1, . . . , 6, which has 

various Mordell–Weil rank up to 18.
The structure of the Mordell–Weil lattice of F (1)

E1,E2
is known to be isomorphic to 

Hom(E1, E2)〈2〉 if E1 and E2 are nonisomorphic (see [8]). Here, for a lattice L, we 
denote by L〈n〉 the lattice structure on L with the pairing multiplied by n. However, 
given an isogeny ϕ ∈ Hom(E1, E2) and the Weierstrass equation of F (1)

E1,E2
, it is quite 

difficult to write down the coordinates of the section corresponding to ϕ, and it has 
been worked out only in limited cases (cf. [9], [2]). Most known examples fall into the 
case where the degree of isogeny ϕ equals 2, in which case the calculations are straight 
forward. One particular example of the case degϕ = 4 is dealt in [2, Example 9.2]. In 
this paper we consider a family of the pairs of elliptic curves E1 and E2 with an isogeny 
ϕ : E1 → E2 of degree 3 defined over k. We write down a formula of the section of F (1)

E1,E2

coming from ϕ defined over the base field k. To do so, we first work with the surface 
F

(6)
E1,E2

, which has a simple affine model that can be viewed as a family of cubic curves 
with a rational point over k. We modify the method in [2] to find sections of F (1)

E1,E2
. We 

also give a section of F (2)
E1,E2

coming from the isogeny ϕ, and give a basis defined over 
the field k(E1[2], E2[2]) when E1 and E2 do not have a complex multiplication.

In §7 we study some examples of singular K3 surfaces in detail. In particular, we 
determine a basis of the MWL of the Inose surface F (1)

E1,E2
and that of F (2)

E1,E2
for the 

singular K3 surfaces X[3,3,3], X[3,2,3] and X[3,0,3] which correspond to the quadratic forms 
3x2 + 3xy + 3y2, 3x2 + 2xy + 3y2, and 3x2 + 3y2 respectively.
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