Journal of Number Theory ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Number Theory

On the mod p kernel of the theta operator and Eisenstein series

Shoyu Nagaoka ^{a,*}, Sho Takemori ^b

^a Dept. Mathematics, Kindai Univ., Higashi-Osaka, Osaka 577-8502, Japan

ARTICLE INFO

Article history: Received 11 September 2017 Accepted 4 January 2018 Available online xxxx Communicated by L. Smajlovic

MSC: primary 11F33 secondary 11F46

Keywords: Siegel modular forms Congruences for modular forms

ABSTRACT

Siegel modular forms in the space of the mod p kernel of the theta operator are constructed by the Eisenstein series in some odd-degree cases. Additionally, a similar result in the case of Hermitian modular forms is given.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The theta operator is a kind of differential operator operating on modular forms. Let F be a Siegel modular form with the generalized q-expansion $F = \sum a(T)q^T$, $q^T := \exp(2\pi i \operatorname{tr}(TZ))$. The theta operator Θ is defined as

$$\Theta: F = \sum a(T)q^T \longmapsto \Theta(F) := \sum a(T) \cdot \det(T)q^T,$$

E-mail addresses: nagaoka@math.kindai.ac.jp (S. Nagaoka), stakemori@gmail.com (S. Takemori).

https://doi.org/10.1016/j.jnt.2018.01.011

0022-314X/© 2018 Elsevier Inc. All rights reserved.

^b Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

^{*} Corresponding author.

which is a generalization of the classical Ramanujan's θ -operator. It is known that the notion of singular modular form F is characterized by $\Theta(F) = 0$.

For a prime number p, the mod p kernel of the theta operator is defined as the set of modular form F such that $\Theta(F) \equiv 0 \pmod{p}$. Namely, the element in the kernel of the theta operator can be interpreted as a mod p analogue of the singular modular form.

In the case of Siegel modular forms of even degree, several examples are known (cf. Remark 2.3). In [11], the first author constructed such a form by using Siegel Eisenstein series in the case of even degree. However little is known about the existence of such a modular form in the case of odd degree.

In this paper, we shall show that some odd-degree Siegel Eisenstein series give examples of modular forms in the mod p kernel of the theta operator. Our proof is based on Katsurada's functional equation of Kitaoka's polynomial appearing as the main factor of the Siegel series.

Additionally, we give a similar result in the case of Hermitian modular forms. In this case, we use Ikeda's functional equation which is the corresponding result of Katsurada's one.

2. Siegel modular case

2.1. Siegel modular forms

Let $\Gamma^{(n)} = \operatorname{Sp}_n(\mathbb{Z})$ be the Siegel modular group of degree n and $M_k(\Gamma^{(n)})$ be the space of Siegel modular forms of weight k for $\Gamma^{(n)}$. Any element F in $M_k(\Gamma^{(n)})$ has a Fourier expansion of the form

$$F(Z) = \sum_{0 \le T \in \Lambda_n} a(T; F) q^T, \quad q^T := \exp(2\pi i \operatorname{tr}(TZ)), \quad Z \in \mathbb{H}_n,$$

where

$$\mathbb{H}_n = \{ Z \in \operatorname{Sym}_n(\mathbb{C}) \mid \operatorname{Im}(Z) > 0 \} \text{ (the Siegel upper half space)},$$

$$\Lambda_n := \{ T = (t_{jl}) \in \operatorname{Sym}_n(\mathbb{Q}) \mid t_{jj} \in \mathbb{Z}, 2t_{jl} \in \mathbb{Z} \}.$$

We also denote by $S_k(\Gamma^{(n)})$ the space of $M_k(\Gamma^{(n)})$ consisting of cusp forms.

For a subring $R \subset \mathbb{C}$, $M_k(\Gamma^{(n)})_R$ (resp. $S_k(\Gamma^{(n)})_R$) consists of an element F in $M_k(\Gamma^{(n)})$ (resp. $S_k(\Gamma^{(n)})$) whose Fourier coefficients a(T;F) lie in R.

2.2. Theta operator

For an element F in $M_k(\Gamma^{(n)})$, we define

$$\Theta: F = \sum a(T; F) q^T \,\longmapsto\, \Theta(F) := \sum a(T; F) \cdot \det(T) q^T$$

Download English Version:

https://daneshyari.com/en/article/8896930

Download Persian Version:

https://daneshyari.com/article/8896930

<u>Daneshyari.com</u>