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1. Introduction and statement of results

Let w = u + iv be a complex variable and let {(w) be the Riemann zeta-function.
We assume the Riemann Hypothesis (RH) is true throughout unless otherwise indicated.
Our goal is to investigate the distribution of the zeros of R¢(a+iv) and I((a+iv), when
0 < a < 1/2. The zeros of these two functions coincide with those of
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((a+w)+((a—w) and ((a+w)=((a—w),

respectively, on the line SR w = 0. Since the latter are analytic except for simple poles at
w=1-—a and a — 1, we will work directly with these functions instead.
One can just as well investigate the zeros of the more general functions

Faw,0) = Clatw) + ¢Cla—w) (8 € [0,2m)).

Note that f,(w,0) = 2R {(a + w) and f,(w, ) = 2iT{(a+ w) on the line Rw = 0. Note
also that f,(w,0) satisfies the functional equation

fal—w,—0) = C(a — w) + e~ ¥¢(a + w)
=e U f,(w,0).
When a = 1/2 we see that
Frya(w,0) = ¢(1/2 +w) +€¢(1/2 = w) = ((1/2 + w)(1 + “x(1/2 — w)),

where x(w) is the factor from the functional equation

((w) = x(w)¢(1 — w). (1.1)

Thus, if RH is true, then iv is a zero of fy/3(w,0) on Rw = 0 if and only if either
C(1/2 4 iv) = 0 or x(1/2 +iv) = —e.

From now on we assume that 6 € [0,27) is fixed and write f,(w) for fq(w,8). Let
Pa = Ba + 17, denote a typical zero of f,(w). M. Z. Garaev [1] and H. Ki [2] have shown
that when 8 = 0 or 7, f,(w) has

T T T
N(T) = - log 9r o +O(logT)

zeros with 0 < v, < T. Although this result is for a fixed a, it is easy to see from their
arguments that one may take the constant implied by the O-term to be absolute when
0 < a < 1/2. Ki has also proved that if RH is true and 0 < ¢ < 1/2; all but a finite
number of the nonreal zeros of f,(w) lie on the line R w = 0. (He proved a similar result
for a < 0 without assuming RH.) Thus, there exists a real number T; such that 5, =0
when 7y, > T,. Here too, an inspection of the proof reveals that there exists a uniform
lower bound T that works for all a € (0,1/2]. Moreover, it is clear that only slight
changes are needed to establish the corresponding results for other values of 6.

When 6 = 0 or 7 the functions f,(w) have “trivial” real zeros as well. M. Z. Garaev
[1] showed that for each a there exists a number Uy > 0 such that every zero of f,(w)
outside the strip |PRw| < Up is real, and that there is exactly one in each interval
(2n — 1+ a,2n + 1+ a). Garaev’s Uy depends on a, but once again one sees from the
proof that it may be chosen independently of @ when 0 < a < 1/2. One can easily show
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