Pair correlation of zeros of the real and imaginary parts of the Riemann zeta-function

Steven M. Gonek ${ }^{\text {a }}$, Haseo Ki ${ }^{\text {b,c,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Rochester, Rochester, NY 14627, USA
${ }^{\text {b }}$ Department of Mathematics, Yonsei University, Seoul, 03722, Republic of Korea
${ }^{\text {c }}$ Korea Institute for Advanced Study, Seoul, Republic of Korea

A R T I C L E I N F O

Article history:

Received 16 August 2017
Accepted 31 October 2017
Available online xxxx
Communicated by L. Smajlovic

$M S C$:

primary 11M06
Keywords:
Riemann zeta-function
Zeros
Simple zeros
Pair correlation

Abstract

We show that if the Riemann Hypothesis is true for the Riemann zeta-function, $\zeta(s)$, and $0<a<1 / 2$, then all but a finite number of the zeros of $\Re \zeta(a+i t), \Im \zeta(a+i t)$, and similar functions are simple. We also study the pair correlation of the zeros of these functions assuming the Riemann Hypothesis is true and $0<a \leq 1 / 2$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let $w=u+i v$ be a complex variable and let $\zeta(w)$ be the Riemann zeta-function. We assume the Riemann Hypothesis (RH) is true throughout unless otherwise indicated. Our goal is to investigate the distribution of the zeros of $\Re \zeta(a+i v)$ and $\Im \zeta(a+i v)$, when $0<a \leq 1 / 2$. The zeros of these two functions coincide with those of

[^0]$$
\zeta(a+w)+\zeta(a-w) \quad \text { and } \quad \zeta(a+w)-\zeta(a-w)
$$
respectively, on the line $\mathfrak{R} w=0$. Since the latter are analytic except for simple poles at $w=1-a$ and $a-1$, we will work directly with these functions instead.

One can just as well investigate the zeros of the more general functions

$$
f_{a}(w, \theta)=\zeta(a+w)+e^{i \theta} \zeta(a-w) \quad(\theta \in[0,2 \pi))
$$

Note that $f_{a}(w, 0)=2 \mathfrak{R} \zeta(a+w)$ and $f_{a}(w, \pi)=2 i \mathfrak{I} \zeta(a+w)$ on the line $\mathfrak{\Re} w=0$. Note also that $f_{a}(w, \theta)$ satisfies the functional equation

$$
\begin{aligned}
f_{a}(-w,-\theta) & =\zeta(a-w)+e^{-i \theta} \zeta(a+w) \\
& =e^{-i \theta} f_{a}(w, \theta)
\end{aligned}
$$

When $a=1 / 2$ we see that

$$
f_{1 / 2}(w, \theta)=\zeta(1 / 2+w)+e^{i \theta} \zeta(1 / 2-w)=\zeta(1 / 2+w)\left(1+e^{i \theta} \chi(1 / 2-w)\right)
$$

where $\chi(w)$ is the factor from the functional equation

$$
\begin{equation*}
\zeta(w)=\chi(w) \zeta(1-w) \tag{1.1}
\end{equation*}
$$

Thus, if RH is true, then $i v$ is a zero of $f_{1 / 2}(w, \theta)$ on $\Re w=0$ if and only if either $\zeta(1 / 2+i v)=0$ or $\chi(1 / 2+i v)=-e^{i \theta}$.

From now on we assume that $\theta \in[0,2 \pi)$ is fixed and write $f_{a}(w)$ for $f_{a}(w, \theta)$. Let $\rho_{a}=\beta_{a}+i \gamma_{a}$ denote a typical zero of $f_{a}(w)$. M. Z. Garaev [1] and H. Ki [2] have shown that when $\theta=0$ or $\pi, f_{a}(w)$ has

$$
N_{a}(T)=\frac{T}{\pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+O(\log T)
$$

zeros with $0<\gamma_{a} \leq T$. Although this result is for a fixed a, it is easy to see from their arguments that one may take the constant implied by the O-term to be absolute when $0<a \leq 1 / 2$. Ki has also proved that if RH is true and $0<a \leq 1 / 2$, all but a finite number of the nonreal zeros of $f_{a}(w)$ lie on the line $\mathfrak{R} w=0$. (He proved a similar result for $a \leq 0$ without assuming RH.) Thus, there exists a real number T_{a} such that $\beta_{a}=0$ when $\gamma_{a}>T_{a}$. Here too, an inspection of the proof reveals that there exists a uniform lower bound T_{0} that works for all $a \in(0,1 / 2]$. Moreover, it is clear that only slight changes are needed to establish the corresponding results for other values of θ.

When $\theta=0$ or π the functions $f_{a}(w)$ have "trivial" real zeros as well. M. Z. Garaev [1] showed that for each a there exists a number $U_{0}>0$ such that every zero of $f_{a}(w)$ outside the strip $|\Re w| \leq U_{0}$ is real, and that there is exactly one in each interval $(2 n-1+a, 2 n+1+a)$. Garaev's U_{0} depends on a, but once again one sees from the proof that it may be chosen independently of a when $0<a \leq 1 / 2$. One can easily show

https://daneshyari.com/en/article/8896988

Download Persian Version:

https://daneshyari.com/article/8896988

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gonek@math.rochester.edu (S.M. Gonek), haseo@yonsei.ac.kr (H. Ki).

