Journal of Number Theory ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

The unramified computation of Rankin–Selberg integrals expressed in terms of Bessel models for split orthogonal groups: Part II

David Soudry

School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

ARTICLE INFO

Article history: Received 5 July 2017 Received in revised form 1 October 2017 Accepted 4 October 2017 Available online xxxx Communicated by S.J. Miller

MSC: primary 11F70 secondary 22E55

Keywords: Rankin-Selberg integrals

ABSTRACT

This paper is the second part of the paper [S1]. We present the unramified computation of the local integrals, with normalized unramified data, over a p-adic field F, arising from the general Rankin–Selberg integrals for $SO_m \times GL_N$, in the Cases 1b, 2 of [S1]. As in the first part, our proof is by "analytic continuation from the unramified computation in the generic case".

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In [S1], we considered three general families of Rankin–Selberg integrals for $SO_m \times GL_N$, where SO_m is a split special orthogonal group in m variables. These are the families surveyed in Cases 1a, 1b, 2 in [S1]. We recall them briefly. See [S1] for exact details.

E-mail address: soudry@post.tau.ac.il.

https://doi.org/10.1016/j.jnt.2017.10.026

0022-314X/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: D. Soudry, The unramified computation of Rankin–Selberg integrals expressed in terms of Bessel models for split orthogonal groups: Part II, J. Number Theory (2018), https://doi.org/10.1016/j.jnt.2017.10.026

 $^{^{\,\,\,\,}}$ Supported in part by Grant 259/14 of the Israel Science Foundation (ISF) founded by the Israel Academy of Sciences and Humanities.

In all three cases, the global integrals are formed by either integrating a cusp form on an orthogonal group against a Fourier coefficient (of Bessel type) of an Eisenstein series on a bigger orthogonal group, or by integrating a Fourier coefficient of similar type of a cusp form against an Eisenstein series on a smaller orthogonal group. Let π be an irreducible, automorphic, cuspidal representation of $SO_m(\mathbb{A})$, where \mathbb{A} is the ring of Adeles of a number field F. Assume that π has a (global) Bessel model with respect to an irreducible, automorphic, cuspidal representation σ of $SO_{m-2k-1}(\mathbb{A})$. In Case 1a, we let τ be an irreducible, automorphic, cuspidal representation of $GL_{r+k+1}(\mathbb{A})$. The global integrals pair cusp forms from π against Bessel-Fourier coefficients of Eisenstein series on $SO_{m+2r+1}(\mathbb{A})$, parabolically induced from $\tau |\det \cdot|^{s-\frac{1}{2}} \times \sigma_r$ (σ_r is an outer twist of σ depending on the parity of r). In Case 1b, τ is an irreducible, automorphic, cuspidal representation of $GL_r(\mathbb{A})$, and the global integrals pair cusp forms from σ against Bessel–Fourier coefficients of Eisenstein series on $SO_{m+2r}(\mathbb{A})$, parabolically induced from $\tau | \det \cdot |^{s-\frac{1}{2}} \times \pi_r$. In Case 2, the Eisenstein series is on a smaller orthogonal group. Here τ is an irreducible, automorphic, cuspidal representation of $GL_r(\mathbb{A})$, with $r \leq k$, and the global integrals pair Bessel-Fourier coefficients of cusp forms from π against Eisenstein series on $SO_{m+2(r-k)-1}(\mathbb{A})$, parabolically induced from $\tau | \det \cdot |^{s-\frac{1}{2}} \times \sigma$. The global integrals in all three cases decompose, for decomposable data, into a product of local integrals, and the subject matter of this paper and [S1] is to present "the unramified computation".

From now on, F denotes a p-adic field, where p is an odd prime number; π denotes an irreducible unramified representation of $G = SO_m(F)$, such that π has a (local) Bessel model with respect to an irreducible, unramified representation σ of $G'_k = SO_{m-2k-1}(F)$, where $m-2k-1 \geq 0$. (When m-2k-1=0,1, this means that π is generic, and "there is no σ ".) In [S1] we presented the unramified computation of the local integrals corresponding to Case 1a. These local integrals were introduced by Ginzburg, Piatetski-Shapiro and Rallis in [G.PS.R.], where they established the unramified computation when the Bessel model is "spherical", i.e. k=0. Let τ be an irreducible, generic, unramified representation of $\mathrm{GL}_{r+k+1}(F)$. Then we proved that the local integrals of Case 1a, when all data are unramified and normalized, are equal to

$$\frac{L(\pi \times \tau, s)}{L(\sigma \times \tau, s + \frac{1}{2})L(\tau, \rho_m, 2s)},$$
(1.1)

where $\rho_m = \wedge^2$, if m is odd, and $\rho_m = sym^2$, if m is even. In this paper we address the two remaining cases, Case 2 and Case 1b, in this order. The representations π and σ are as before. In Case 2, τ is an irreducible, generic, unramified representation of $GL_r(F)$, $1 \leq r \leq k$. The unramified computation of the local integrals of Case 2 gives (1.1).

The local integrals in Case 1b generalize the local integrals studied by Shahidi [Sh] (arising in the Langlands–Shahidi method). They were considered by Friedberg and Goldberg in [F.G.], where they generalized Shahidi's local coefficients. For π and σ as

Download English Version:

https://daneshyari.com/en/article/8896989

Download Persian Version:

https://daneshyari.com/article/8896989

Daneshyari.com