ARTICLE IN PRESS

YJNTH:5890

Journal of Number Theory ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Conditional expanding bounds for two-variable functions over arbitrary fields

Hossein Nassajian Mojarrad, Thang Pham*

Department of Mathematics, EPFL, Lausanne, Switzerland

ARTICLE INFO

Article history: Received 6 June 2017 Received in revised form 26 September 2017 Accepted 26 September 2017 Available online xxxx Communicated by L. Smajlovic

Keywords: Sum-product estimates Incidence geometry Expanders ABSTRACT

In this paper, we prove some results on the sum-product problem over arbitrary fields which improve and generalize results given by Hegyvári and Hennecart [5]. More precisely, we prove that, for related pairs of two-variable functions f(x, y) and g(x, y), if A and B are two sets in an arbitrary field \mathbb{F} with |A| = |B|, then

 $\max\{|f(A,B)|, |g(A,B)|\} \gg |A|^{1+c},$

for some c > 0.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, by \mathbb{F} we refer to any arbitrary field, while by \mathbb{F}_p , we only refer to the fields of prime order p. We denote the set of non-zero elements by \mathbb{F}^* and \mathbb{F}_p^* , respectively. Furthermore, we use the following convention: if the characteristic of \mathbb{F} is positive, then we denote its characteristic by p; if the characteristic of \mathbb{F} is zero, then we

* Corresponding author.

E-mail addresses: hossein.mojarrad@epfl.ch (H. Nassajian Mojarrad), thang.pham@epfl.ch (T. Pham).

https://doi.org/10.1016/j.jnt.2017.09.020 0022-314X/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: H. Nassajian Mojarrad, T. Pham, Conditional expanding bounds for two-variable functions over arbitrary fields, J. Number Theory (2018), https://doi.org/10.1016/j.jnt.2017.09.020

ARTICLE IN PRESS

H. Nassajian Mojarrad, T. Pham / Journal of Number Theory ••• (••••) •••-•••

set $p = \infty$. So a term like $N < p^{5/8}$ is restrictive in positive characteristic, but vacuous for zero one.

For $A \subset \mathbb{F}$, the sum and the product sets are defined as follows:

$$A + A = \{a + a' : a, a' \in A\}, \ A \cdot A = \{a \cdot a' : a, a' \in A\}.$$

For $A \subset \mathbb{F}_p$, Bourgain, Katz and Tao ([2]) proved that if $p^{\delta} < |A| < p^{1-\delta}$ for some $\delta > 0$, then we have

$$\max\left\{|A+A|, |A\cdot A|\right\} \gg |A|^{1+\epsilon},$$

for some $\epsilon = \epsilon(\delta) > 0$. Here, and throughout, by $X \ll Y$ we mean that there exists the constant C > 0 such that $X \leq CY$.

In a recent paper [8], Roche-Newton, Rudnev, and Shkredov improved and generalized this result to the setting of arbitrary fields. More precisely, they showed that for $A \subset \mathbb{F}$, the sum set, product set, and quotient set satisfy

 $\max\{|A \pm A|, |A \cdot A|\} \gg |A|^{6/5}, \ \max\{|A \pm A|, |A : A|\} \gg |A|^{6/5}.$

We note that the same bound also holds for |A(1+A)| [10], and $|A+A^2|$, max $\{|A+A|, |A^2+A^2|\}$ [7]. We refer the reader to [1,3,8,6] and references therein for recent results on the sum-product topic.

Let G be a subgroup of \mathbb{F}^* , and $g: G \to \mathbb{F}^*$ be an arbitrary function. We define

$$\mu(g) = \max_{t \in \mathbb{F}^*} \left| \left\{ x \in G \colon g(x) = t \right\} \right|.$$

For $A, B \subset \mathbb{F}_p$ and a related pair of two-variable functions f(x, y) and g(x, y) in $\mathbb{F}_p[x, y]$, Hegyvári and Hennecart [5], using graph theoretic techniques, proved that there exists $\Delta(\alpha) > 0$ such that for $|A| = |B| = p^{\alpha}$, we have

$$\max\{|f(A,B)|, |g(A,B)|\} \gg |A|^{1+\Delta(\alpha)}$$

where $f(A, B) = \{f(a, b) : a \in A, b \in B\}$. More precisely, they established the following results.

Theorem 1.1 (Hegyvári and Hennecart, [5]). Let G be a subgroup of \mathbb{F}_p^* . Consider the function f(x, y) = g(x)(h(x) + y) on $G \times \mathbb{F}_p^*$, where $g, h: G \to \mathbb{F}_p^*$ are arbitrary functions. Define $m = \mu(g \cdot h)$. For any subsets $A \subset G$ and $B, C \subset \mathbb{F}_p^*$, we have

$$|f(A,B)| |B \cdot C| \gg \min\left\{\frac{|A||B|^2|C|}{pm^2}, \frac{p|B|}{m}\right\}.$$

Please cite this article in press as: H. Nassajian Mojarrad, T. Pham, Conditional expanding bounds for two-variable functions over arbitrary fields, J. Number Theory (2018), https://doi.org/10.1016/j.jnt.2017.09.020

 $\mathbf{2}$

Download English Version:

https://daneshyari.com/en/article/8896992

Download Persian Version:

https://daneshyari.com/article/8896992

Daneshyari.com