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S-unit equations an effective bound on the number of non-degenerate solutions
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the other using only elementary methods.
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As a corollary, we find that, for fixed c1,z1,...,ck, s € NT,
the number of distinct prime factors of c1z} + -+ + cpa} is
bounded, as n ranges over N1, if and only if 1 = -+ = x.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Given k,¢ € N, let a; ; be, for 1 <i <k and 0 < j < ¢, some fixed rationals. Then,
consider the Q-valued sequence (s, ),>1 obtained by taking

for every n € N1 (notations and terminology, if not explained, are standard or should
be clear from the context); we refer to s, as a sum of super-powers of degree . Notice
that (s,)n>1 includes as a special case any Q-valued sequence of general term

0,

k i
S ITvl ™. (2)

i=1j=1

where, for each i = 1,...,k, we let {; € Nt and y;1,...,y10 € Q\ {0}, while
fi1,..., fie, are polynomials in one variable with integral coefficients. Conversely, se-
quences of the form (1) can be viewed as sequences of the form (2), the latter being
prototypical of scenarios where polynomials are replaced with more general functions
NT — Z (see also § 4).

We let w(x) denote, for each non-zero € Z, the number of distinct prime divisors of z,
and define w(0) := oo. Then, for x € Z and y € N we set w(zy™!) := w(d1a)+w (5 1y),
where 0 is the greatest common divisor of z and y.

In addition, given n > 2 and 6 > 1, we write slogy(n) for the super-logarithm of n
to base 6, that is, the largest integer x > 0 for which %% < n, where %% := 1 and
02 == 09" for k > 1; note that slog,(n) — 0o as n — oo.

The main goal of this paper is to provide necessary and sufficient conditions for the
boundedness of the sequence (w(sy,))n>1. More precisely, we have:

Theorem 1. The following are equivalent:

(a) There is a base 0 > 1 such that w(sy) > slogy(n) for infinitely many n.
(b) limsup,,_,., w(s,) = 00.

(c) There do not exist non-zero rationals ag,bo,...,as by such that sqp, = Hﬁ:o EQ")J
L 2n—1)7
and san—1 = J;_g bg- "D for all n.
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