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Given k, � ∈ N+, let xi,j be, for 1 ≤ i ≤ k and 0 ≤ j ≤ �, 
some fixed integers, and define, for every n ∈ N+, sn :=∑k

i=1
∏�

j=0 x
nj

i,j . We prove that the following are equivalent:

(a) There are a real θ > 1 and infinitely many indices n for 
which the number of distinct prime factors of sn is greater 
than the super-logarithm of n to base θ.

(b) There do not exist non-zero integers a0, b0, . . . , a�, b� such 
that s2n =

∏�
i=0 a

(2n)i
i and s2n−1 =

∏�
i=0 b

(2n−1)i
i for 

all n.

We will give two different proofs of this result, one based on a 
theorem of Evertse (yielding, for a fixed finite set of primes S, 
an effective bound on the number of non-degenerate solutions 
of an S-unit equation in k variables over the rationals) and 
the other using only elementary methods.
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As a corollary, we find that, for fixed c1, x1, . . . , ck, xk ∈ N+, 
the number of distinct prime factors of c1xn

1 + · · · + ckxn
k is 

bounded, as n ranges over N+, if and only if x1 = · · · = xk.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Given k, � ∈ N+, let xi,j be, for 1 ≤ i ≤ k and 0 ≤ j ≤ �, some fixed rationals. Then, 
consider the Q-valued sequence (sn)n≥1 obtained by taking

sn :=
k∑

i=1

�∏
j=0

xnj

i,j (1)

for every n ∈ N+ (notations and terminology, if not explained, are standard or should 
be clear from the context); we refer to sn as a sum of super-powers of degree �. Notice 
that (sn)n≥1 includes as a special case any Q-valued sequence of general term

k∑
i=1

�i∏
j=1

y
fi,j(n)
i,j , (2)

where, for each i = 1, . . . , k, we let �i ∈ N+ and yi,1, . . . , y1,�i ∈ Q \ {0}, while 
fi,1, . . . , fi,�i are polynomials in one variable with integral coefficients. Conversely, se-
quences of the form (1) can be viewed as sequences of the form (2), the latter being 
prototypical of scenarios where polynomials are replaced with more general functions 
N+ → Z (see also § 4).

We let ω(x) denote, for each non-zero x ∈ Z, the number of distinct prime divisors of x, 
and define ω(0) := ∞. Then, for x ∈ Z and y ∈ N+ we set ω(xy−1) := ω(δ−1x) +ω(δ−1y), 
where δ is the greatest common divisor of x and y.

In addition, given n ≥ 2 and θ > 1, we write slogθ(n) for the super-logarithm of n
to base θ, that is, the largest integer κ ≥ 0 for which θ⊗κ ≤ n, where θ⊗0 := 1 and 
θ⊗κ := θθ

⊗(κ−1) for κ ≥ 1; note that slogθ(n) → ∞ as n → ∞.
The main goal of this paper is to provide necessary and sufficient conditions for the 

boundedness of the sequence (ω(sn))n≥1. More precisely, we have:

Theorem 1. The following are equivalent:

(a) There is a base θ > 1 such that ω(sn) > slogθ(n) for infinitely many n.
(b) lim supn→∞ ω(sn) = ∞.
(c) There do not exist non-zero rationals a0, b0, . . . , a�, b� such that s2n =

∏�
j=0 a

(2n)j
j

and s2n−1 =
∏�

j=0 b
(2n−1)j
j for all n.
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