Journal of Number Theory ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Number Theory

Period and index for higher genus curves

Shahed Sharif

CSU San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, United States

ARTICLE INFO

Article history:
Received 26 November 2015
Received in revised form 25 August 2017
Accepted 1 October 2017
Available online xxxx
Communicated by A. Pal

Keywords: Period Index Algebraic curves

ABSTRACT

Given a curve C over a field K, the period of C/K is the gcd of degrees of K-rational divisor classes, while the index is the gcd of degrees of K-rational divisors. S. Lichtenbaum showed that the period and index must satisfy certain divisibility conditions. For given admissible period, index, and genus, we show that there exists a curve C and a number field K with these desired invariants, as long as the index is not divisible by 4.

© 2017 Published by Elsevier Inc.

1. Period and index

Let K be a field; usually, we will consider it to be a number field. By a curve C over K, we shall mean a smooth projective geometrically integral curve. The period and index of C over K are two integer invariants which measure the failure of C to have rational points. Specifically, the index is the gcd of degrees of all effective divisors $D \in \text{Div } C$ —that is, effective divisors which are rational over K. Equivalently, the index is the gcd of degrees [L:K], where L/K ranges over algebraic extensions such that $C(L) \neq \emptyset$. To see this, note that if $P \in C(L)$, then $D = \sum \sigma P$ is a rational effective divisor, where σ ranges over the embeddings of L into an algebraic closure of K; and

E-mail address: ssharif@csusm.edu.

https://doi.org/10.1016/j.jnt.2017.10.005 0022-314X/© 2017 Published by Elsevier Inc.

2

conversely any minimal rational effective divisor is of this form. Also observe that if C already has K-points, then its index is 1.

The period is less stringent: here we look at the smallest positive degree of rational divisor *classes*; these are given by divisors which are linearly equivalent to their Galois conjugates. To see that the two invariants need not be the same, consider any conic over \mathbb{R} without rational points, say the curve with affine piece $x^2 + y^2 = -1$. Certainly the index is 2, but as our curve is genus 0, there is a single divisor class of degree 1; namely, the class of a point. Therefore this class must be rational over \mathbb{R} , and so the period is 1.

As a rational divisor automatically belongs to a rational divisor class, we have $P \mid I$. Furthermore, the canonical class gives a rational divisor of degree 2(g-1), so $I \mid 2(g-1)$. Lichtenbaum in [Lic69] found further conditions on the possible values of the period and index:

Theorem 1.1 (Theorem 8, [Lic69]). Let C/K be a curve over a field with genus g, period P, and index I. Then

- (i) $P \mid I \mid 2P^2$, and
- (ii) if either 2(g-1)/I or P is even, then $I \mid P^2$.

We say a triple of integers (g, P, I) is *admissible* if they satisfy the divisibility conditions of Lichtenbaum's theorem; that is, if they are possible values for the genus, period, and index of a curve. The goal of this paper is to determine whether every admissible triple indeed occurs as the invariants of some curve over a number field. Our main result is the following:

Theorem 1.2. Given any admissible triple (g, P, I) such that $4 \nmid I$, there exists a number field K and a curve Y over K with genus g, period P and index I.

Similar results have been proven earlier, including a complete answer in the genus 1 case:

Theorem 1.3 (Theorem 2, [Sha12]). Let (1, P, I) be an admissible triple. Let E be an elliptic curve over a number field K. Then there exists a genus 1 curve X which is a principal homogeneous space for E with period P and index I.

A slightly weaker version of the above was proved in [CS10], and was used to construct Shafarevich–Tate groups with arbitrarily high p-rank.

Over other fields there are a scattering of results. In the case of p-adic fields, Lichtenbaum found stricter divisibility conditions:

Theorem 1.4 (Theorem 7, [Lic69]). If C is a curve over a finite extension of \mathbb{Q}_p with genus g, period P, and index I, then $P \mid (g-1)$, $I \mid 2P$, and I = P if (g-1)/P is even.

Download English Version:

https://daneshyari.com/en/article/8897007

Download Persian Version:

https://daneshyari.com/article/8897007

<u>Daneshyari.com</u>