Schmidt's subspace theorem for moving hypersurface targets

Nguyen Thanh Son ${ }^{\text {a }}$, Tran Van Tan ${ }^{\text {a,*, }}$, Nguyen Van Thin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Hanoi National University of Education, 136-Xuan
Thuy street, Cau Giay, Hanoi, Viet Nam
${ }^{\text {b }}$ Department of Mathematics, Thai Nguyen University of Education, Luong Ngoc
Quyen Street, Thai Nguyen city, Viet Nam

A R T I C L E I N F O

Article history:

Received 27 February 2017
Received in revised form 22 August
2017
Accepted 19 October 2017
Available online xxxx
Communicated by the Principal Editors

$M S C$:

11J68
11J25
11J97
Keywords:
Diophantine approximation Schmidt's Subspace Theorem
Vojta's dictionary

A B S T R A C T

It was discovered that there is a formal analogy between Nevanlinna theory and Diophantine approximation. Via Vojta's dictionary, the Second Main Theorem in Nevanlinna theory corresponds to Schmidt's Subspace Theorem in Diophantine approximation. Recently, Cherry, Dethloff, and Tan (arXiv:1503.08801v2 [math.CV]) obtained a Second Main Theorem for moving hypersurfaces intersecting projective varieties. In this paper, we shall give the counterpart of their Second Main Theorem in Diophantine approximation.
© 2017 Elsevier Inc. All rights reserved.

[^0]https://doi.org/10.1016/j.jnt.2017.10.008
0022-314X/@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let k be an algebraic number field of degree ρ. Denote by $M(k)$ the set of places (i.e., equivalent classes of absolute values) of k and write $M_{\infty}(k)$ for the set of Archimedean places. From $v \in M(k)$, we choose the normalized absolute value $|\cdot|_{v}$ such that $|\cdot|_{v}=|$. on \mathbb{Q} (the standard absolute value) if v is archimedean, whereas for v non-archimedean $|p|_{v}=p^{-1}$ if v lies above the rational prime p. Denote by k_{v} the completion of k with respect to v and by $\rho_{v}=\left[k_{v}: \mathbb{Q}_{v}\right]$ the local degree. We put $\|\cdot\|_{v}=|\cdot|_{v}^{n_{v}}$, where $n_{v}=\rho_{v} / \rho$. Then norm $\|\cdot\|_{v}$ satisfies the following properties:
(i) $\|x\|_{v} \geq 0$, with equality if and only if $x=0$;
(ii) $\|x y\|_{v}=\|x\|_{v}\|y\|_{v}$ for all $x, y \in k$;
(iii) $\left\|x_{1}+\cdots+x_{m}\right\|_{v} \leq B_{v}^{n_{v}} \cdot \max \left\{\left\|x_{1}\right\|_{v}, \ldots,\left\|x_{m}\right\|_{v}\right\}$ for all $x_{1}, \ldots, x_{m} \in k, n \in \mathbb{N}$, where $B_{v}=1$ if v is non-archimedean and $B_{v}=n$ if v is archimedean.

Moreover, for each $x \in k \backslash\{0\}$, we have the following product formula:

$$
\prod_{v \in M(k)}\|x\|_{v}=1
$$

For $v \in M(k)$, we also extend $\|\cdot\|_{v}$ to an absolute value on the algebraic closure \bar{k}_{v}.
For $x \in k$, the logarithmic height of x is defined by $h(x)=\sum_{v \in M(k)} \log ^{+}\|x\|_{v}$, where $\log ^{+}\|x\|_{v}=\log \max \left\{\|x\|_{v}, 1\right\}$.

For $x=\left[x_{0}: \cdots: x_{M}\right] \in \mathbb{P}^{M}(k)$, we set $\|x\|_{v}=\max _{0 \leq i \leq M}\left\|x_{i}\right\|_{v}$, and define the logarithmic height of x by

$$
\begin{equation*}
h(x)=\sum_{v \in M(k)} \log \|x\|_{v} \tag{1.1}
\end{equation*}
$$

Notice that the definition of $h(x)$ does not depend on the representative of $x \in \mathbb{P}^{M}(k)$ because of the product formula.

For a positive integer d, we set

$$
\mathcal{T}_{d}:=\left\{\left(i_{0}, \ldots, i_{M}\right) \in \mathbb{N}_{0}^{M+1}: i_{0}+\cdots+i_{M}=d\right\} .
$$

Let Q be a homogeneous polynomial of degree d in $k\left[x_{0}, \ldots, x_{M}\right]$. We write

$$
Q=\sum_{I \in \mathcal{T}_{d}} a_{I} x^{I}
$$

Set $\|Q\|_{v}:=\max _{I}\left\|a_{I}\right\|_{v}$. The height of Q is defined by

$$
h(Q):=\sum_{v \in M(k)} \log \|Q\|_{v}
$$

https://daneshyari.com/en/article/8897010

Download Persian Version:

https://daneshyari.com/article/8897010

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: k16toannguyenthanhson@gmail.com (N.T. Son), tranvantanhn@yahoo.com (T. Van Tan), thinmath@gmail.com (N. Van Thin).

