

Quadratic forms and their Berggren trees

Byungchul Cha ${ }^{\text {a,*, }}$, Emily Nguyen, Brandon Tauber
${ }^{\text {a }}$ Muhlenberg College, United States

A R T I C L E I N F O

Article history:

Received 20 February 2017
Received in revised form 13
September 2017
Accepted 14 September 2017
Available online xxxx
Communicated by S.J. Miller

Keywords:

Pythagorean triples
Quadratic forms
Continued fraction

Abstract

An old result of Berggren's says that there exist three 3×3 matrices N_{1}, N_{2}, N_{3} with the following remarkable property: Start with $(3,4,5)$ or $(4,3,5)$ and multiply N_{1}, N_{2}, or N_{3} by it in any order any number of times. This yields another primitive Pythagorean triple (x, y, z), that is, a triple of positive integers without common factor satisfying $x^{2}+y^{2}-$ $z^{2}=0$. Furthermore, every primitive Pythagorean triple can be obtained uniquely this way. In other words, all primitive Pythagorean triples can be given a tree-like structure with each edge representing a multiplication by N_{j}. In this paper, we present a geometric algorithm for producing such trees that is applicable to any integral quadratic form. Although this algorithm does not always yield a tree, we find a few other trees arising from different quadratic forms.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

It is well-known that there are infinitely many primitive Pythagorean triples, that is, integer triples (x, y, z) satisfying $x^{2}+y^{2}-z^{2}=0$ such that $x, y, z>0$ without common factor. Perhaps less known is the fact that all such triples can be given a certain tree-like structure via matrix multiplication as in Fig. 1. If we define

[^0]https://doi.org/10.1016/j.jnt.2017.09.003
0022-314X/® 2017 Elsevier Inc. All rights reserved.

Fig. 1. The tree of Pythagorean triples.

$$
N_{1}=\left(\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right), \quad N_{2}=\left(\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right), \quad N_{3}=\left(\begin{array}{ccc}
-1 & 2 & 2 \\
-2 & 1 & 2 \\
-2 & 2 & 3
\end{array}\right)
$$

each (directed) edge in Fig. 1 between two adjacent Pythagorean triples represents a matrix multiplication, for example, $N_{1}(3,4,5)^{\top}=(5,12,13)^{\top}$. (Here, the "丁" means the transpose.) Then the theorem is that every primitive Pythagorean triple (x, y, z) (with y even) appears exactly once in the tree. If y is odd, (x, y, z) appears uniquely in a similar but different tree, having $(4,3,5)$ as its root with the edges generated by the same N_{1}, N_{2}, N_{3} (see §A.1). As far as we are aware, [3] is the oldest literature containing this result. Afterwards, many authors seem to have (re-)discovered this theorem independently. See, for example, [1], [2], and other references cited in [9]. It turns out that the quadratic form $x^{2}+y^{2}-z^{2}$, which we will call the Pythagorean form from now on, is not the only one with such a property. In [10], Wayne found that a similar tree-like structure exists for triples satisfying $x^{2}+x y+y^{2}-z^{2}=0$.

Can the zeros of other quadratic forms be organized into trees this way? If such a tree exists, how can it be constructed? In this paper, we present some answers to these questions.

Let $Q(\mathbf{x})$ be an integral ternary quadratic form on \mathbb{R}^{3}. We will think of $Q(\mathbf{x})$ as a generalization of Pythagorean and Wayne's forms; thus, we will always assume that $Q(\mathbf{x})$ is nondegenerate and possesses infinitely many integer zeros (see $(Q-\mathrm{I})-(Q$-III) in $\S 2.2$ for precise conditions for $Q(\mathbf{x})$). The key idea is to construct the matrices such as N_{1}, N_{2}, N_{3} using reflections of \mathbb{R}^{3}, whose definition is given in (5). This is done first by Conrad [5] in the case of Pythagorean triples.

In this paper, we attempt to generalize some of the ideas that surface in [5] and develop a geometric algorithm that can be applied to any integral quadratic form $Q(\mathbf{x})$

https://daneshyari.com/en/article/8897043

Download Persian Version:

https://daneshyari.com/article/8897043

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: cha@muhlenberg.edu (B. Cha).

