On Diophantine exponents for Laurent series over a finite field

Tomohiro Ooto
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan

A R T I C L E I N F O

Article history:

Received 21 November 2016
Received in revised form 18
September 2017
Accepted 18 September 2017
Available online xxxx
Communicated by D. Thakur

MSC:

11J82
11J61
11J70
Keywords:
Diophantine approximation
Diophantine exponent
Laurent series over a finite field

Abstract

In this paper, we study the properties of Diophantine exponents w_{n} and w_{n}^{*} for Laurent series over a finite field. We prove that for an integer $n \geq 1$ and a rational number $w>2 n-1$, there exist a strictly increasing sequence of positive integers $\left(k_{j}\right)_{j \geq 1}$ and a sequence of algebraic Laurent series $\left(\xi_{j}\right)_{j \geq 1}$ such that $\operatorname{deg} \xi_{j}=p^{k_{j}}+1$ and

$$
w_{1}\left(\xi_{j}\right)=w_{1}^{*}\left(\xi_{j}\right)=\ldots=w_{n}\left(\xi_{j}\right)=w_{n}^{*}\left(\xi_{j}\right)=w
$$

for any $j \geq 1$. For each $n \geq 2$, we give explicit examples of Laurent series ξ for which $w_{n}(\xi)$ and $w_{n}^{*}(\xi)$ are different.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Mahler [20] and Koksma [18] introduced Diophantine exponents which measure the quality of approximation to real numbers. Using the Diophantine exponents, they classified the set \mathbb{R} all of real numbers. Let ξ be a real number and $n \geq 1$ be an integer. We denote by $w_{n}(\xi)$ the supremum of the real numbers w which satisfy

[^0]https://doi.org/10.1016/j.jnt.2017.09.008
0022-314X /@ 2017 Elsevier Inc. All rights reserved.
$$
0<|P(\xi)| \leq H(P)^{-w}
$$
for infinitely many integer polynomials $P(X)$ of degree at most n. Here, $H(P)$ is defined to be the maximum of the absolute values of the coefficients of $P(X)$. We denote by $w_{n}^{*}(\xi)$ the supremum of the real numbers w^{*} which satisfy
$$
0<|\xi-\alpha| \leq H(\alpha)^{-w^{*}-1}
$$
for infinitely many algebraic numbers α of degree at most n. Here, $H(\alpha)$ is equal to $H(P)$, where $P(X)$ is the minimal polynomial of α over \mathbb{Z}.

We recall some results on Diophantine exponents. It is clear that $w_{1}(\xi)=w_{1}^{*}(\xi)$ for all real numbers ξ. Roth [29] established that $w_{1}(\xi)=w_{1}^{*}(\xi)=1$ for all irrational algebraic real numbers ξ. Furthermore, it follows from the Schmidt Subspace Theorem that

$$
\begin{equation*}
w_{n}(\xi)=w_{n}^{*}(\xi)=\min \{n, d-1\} \tag{1}
\end{equation*}
$$

for all $n \geq 1$ and algebraic real numbers ξ of degree d. It is known that

$$
0 \leq w_{n}(\xi)-w_{n}^{*}(\xi) \leq n-1
$$

for all $n \geq 1$ and real numbers ξ (see Section 3.4 in [4]). Sprindz̆uk [32] proved that $w_{n}(\xi)=w_{n}^{*}(\xi)=n$ for all $n \geq 1$ and almost all real numbers ξ. Baker [3] proved that for $n \geq 2$, there exists a real number ξ for which $w_{n}(\xi)$ and $w_{n}^{*}(\xi)$ are different. More precisely, he proved that the set of all values taken by the function $w_{n}-w_{n}^{*}$ contains the set $[0,(n-1) / n]$ for $n \geq 2$. In recent years, this result has been improved. Bugeaud $[10,5]$ showed that the set of all values taken by $w_{2}-w_{2}^{*}$ is equal to the closed interval $[0,1]$ and the set of all values taken by $w_{3}-w_{3}^{*}$ contains the set $[0,2)$. Bugeaud and Dujella [8] proved that for any $n \geq 4$, the set of all values taken by $w_{n}-w_{n}^{*}$ contains the set $\left[0, \frac{n}{2}+\frac{n-2}{4(n-1)}\right)$.

Let p be a prime. We can define Diophantine exponents w_{n} and w_{n}^{*} over the field \mathbb{Q}_{p} of p-adic numbers in a similar way to the real case. Analogues of the above results for p-adic numbers have been studied (see e.g. Section 9.3 in [4] and $[11,26]$).

Let p be a prime and q be a power of p. Let us denote by \mathbb{F}_{q} the finite field of q elements, $\mathbb{F}_{q}[T]$ the ring of all polynomials over $\mathbb{F}_{q}, \mathbb{F}_{q}(T)$ the field of all rational functions over \mathbb{F}_{q}, and $\mathbb{F}_{q}\left(\left(T^{-1}\right)\right)$ the field of all Laurent series over \mathbb{F}_{q}. For $\xi \in \mathbb{F}_{q}\left(\left(T^{-1}\right)\right) \backslash\{0\}$, we can write

$$
\xi=\sum_{n=N}^{\infty} a_{n} T^{-n}
$$

where $N \in \mathbb{Z}, a_{n} \in \mathbb{F}_{q}$ for all $n \geq N$, and $a_{N} \neq 0$. We define an absolute value on $\mathbb{F}_{q}\left(\left(T^{-1}\right)\right)$ by $|0|:=0$ and $|\xi|:=q^{-N}$. This absolute value can be uniquely extended to the algebraic closure of $\mathbb{F}_{q}\left(\left(T^{-1}\right)\right)$ and we continue to write $|\cdot|$ for the extended absolute

https://daneshyari.com/en/article/8897052

Download Persian Version:
https://daneshyari.com/article/8897052

Daneshyari.com

[^0]: E-mail address: ooto@math.tsukuba.ac.jp.

