Journal of Number Theory ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Number Theory

Representations of Weil–Deligne groups and Frobenius conjugacy classes

Abhijit Laskar

ABN-AMRO Bank N.V., Gustav Mahlerlaan 10, 1082 PP Amsterdam, PAC HQ 7216, Netherlands

ARTICLE INFO

Article history:
Received 8 May 2016
Received in revised form 17 June 2017
Accepted 5 September 2017
Available online xxxx
Communicated by the Principal Editors

Keywords:
Weil-Deligne representations
Motives

ABSTRACT

Let X be a smooth projective algebraic variety over a number field F, with an embedding $\tau: F \hookrightarrow \mathbb{C}$. The action of $\operatorname{Gal}(\bar{F}/F)$ on ℓ -adic cohomology groups $\operatorname{H}^{i}_{et}(X_{/\bar{F}}, \mathbb{Q}_{\ell})$, induces Galois representations $\rho_{\ell}^{i}: \operatorname{Gal}(\bar{F}/F) \to \operatorname{GL}(\operatorname{H}_{et}^{i}(X_{/\bar{F}}, \mathbb{Q}_{\ell})).$ Fix a non-archimedean valuation v on F, of residual characteristic p. Let F_v be the completion of F at v and 'W_v be the Weil–Deligne group of F_v . We establish new cases, for which the linear representations ρ_{ℓ}^{i} of W_{v} , associated to ρ_{ℓ}^{i} , form a compatible system of representations of W_v defined over \mathbb{Q} . Under suitable hypotheses, we show that in some cases, these representations actually form a compatible system of representations of W_v , with values in the Mumford-Tate group of $\mathrm{H}^i_R(\tau X(\mathbb{C}),\mathbb{Q})$. When X has good reduction at v, we establish a motivic relationship between the compatibility of the system $\{\rho_{\ell}^i\}_{\ell\neq p}$ and the conjugacy class of the crystalline Frobenius of the reduction of X at v.

© 2017 Elsevier Inc. All rights reserved.

E-mail address: abhijit.laskar@nl.abnamro.com.

https://doi.org/10.1016/j.jnt.2017.09.010

0022-314X/© 2017 Elsevier Inc. All rights reserved.

1. Introduction and notation

Throughout, F is a number field, with an embedding $\tau: F \hookrightarrow \mathbb{C}$, v is a non-archimedean valuation on F and F_v is the completion. By \bar{F} we denote a fixed separable algebraic closure of F, $\bar{\tau}: \bar{F} \hookrightarrow \mathbb{C}$ is an extension of τ , \bar{v} is an extension of v to \bar{F} and \bar{F}_v is the localization of \bar{F} at \bar{v} . The residue fields of F_v and \bar{F}_v are denoted by k_v and \bar{k}_v , respectively. Let the characteristic of k_v be p>0 and write $|k_v|:=q_v$. We write $\Gamma_v:=\mathrm{Gal}(\bar{F}_v/F_v)\subset \Gamma_F:=\mathrm{Gal}(\bar{F}_v/F_v)$ and $I_v\subset \Gamma_v$ is the inertia group. By an arithmetic Frobenius $\Phi_v\in \Gamma_v$, we mean an element which induces the Frobenius automorphism ϕ_v of \bar{k}_v . We denote by W_v the Weil group of F_v , i.e., the dense subgroup of Γ_v which induce on \bar{k}_v an integral power $\phi_v^{\alpha(w)}$, for $w\in \Gamma_v$. The map $\alpha:W_v\to \mathbb{Z}$ thus defined is a group homomorphism and $\ker(\alpha)=I_v$. The Weil-Deligne group W_v of W_v is the group scheme over \mathbb{Q} defined as the semi-direct product of W_v with the additive group \mathbb{G}_a over \mathbb{Q} , on which W_v acts as: $w\cdot x\cdot w^{-1}=q_v^{\alpha(w)}\cdot x$. For ease of exposition, we shall assume our varieties to be geometrically irreducible.

Consider a smooth projective algebraic variety X over F. The action of Γ_F on the geometric ℓ -adic cohomology groups $V^i_\ell:=H^i_{et}(X_{/\bar{F}},\mathbb{Q}_\ell)$, induces Galois representations $\rho_{\ell}^i:\Gamma_F\to \mathrm{GL}(V_{\ell}^i)$. A fundamental problem in arithmetic geometry, is to determine, how far the properties of ρ_{ℓ}^{i} are independent of ℓ . For instance, it has been conjectured [28] that, if v is any non-archimedean valuation on F, then for every $w \in W_v$, the characteristic polynomial $P_{\ell,v}^i(w,T) := \det(1-\rho_{\ell}^i(w)T;V_{\ell}^i)$, of the \mathbb{Q}_{ℓ} -linear map $\rho_{\ell}^i(w)$ has coefficients in \mathbb{Q} and is independent of ℓ ? By Deligne's result [8] on the Weil conjectures, we know that this conjecture holds true if we assume that variety X has good reduction at v. But the case of bad-reduction is wide open. The starting point of this article is an observation (see Theorem 2.1), which gives a criterion for detecting the rationality and ℓ -independence of $P_{\ell,v}^i(w,T)$, irrespective of the type of reduction at v. This allows us to verify the above conjecture in a large number of new cases; see Corollary 2.4. Equipped with these results, we can take a step forward in the analysis of the bad reduction case. In order to do this, first one attaches to ρ_{ℓ}^{i} , a linear representation $\rho_{\ell}^{i} := (V_{\ell}^{i}, {\rho'}_{\ell}^{i}, N'_{i,\ell})$ of W_v over \mathbb{Q}_ℓ , where ρ_{ℓ}^i is a continuous representation of W_v and $\overline{N}_{i,\ell}^i$ is the associated monodromy operator (see §3.2). Then, we investigate the following conjecture:

Conjecture 1.1 ($C_{WD}(X_{F_v}, i)$, cf. [12, 2.4.3]). The system $\{\underline{\rho_\ell^i}\}_{\ell \neq p}$ forms a compatible system (in the sense of [7, 8.8]) of linear representations of W_v defined over \mathbb{Q} .

The notion of compatible system considered here is a strong one (see §3.2). The first main result of this article establishes some new cases of the above conjecture.

Theorem 1.2. Let X a smooth projective variety over F which is a finite product of moduli spaces of stable vector bundles of co-prime rank and degree over smooth projective curves, unirational varieties of dimension ≤ 3 , uniruled surfaces, hyperkähler varieties of $K3^{[n]}$

Download English Version:

https://daneshyari.com/en/article/8897057

Download Persian Version:

https://daneshyari.com/article/8897057

<u>Daneshyari.com</u>