

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Representations by sextenary quadratic forms with coefficients 1, 2, 3 and 6 and on newforms in $S_3(\Gamma_0(24), \chi)$

Zafer Selcuk Aygin

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

ARTICLE INFO

Article history: Received 9 May 2017 Received in revised form 16 September 2017 Accepted 18 September 2017 Available online 20 October 2017 Communicated by A. El-Guindy

MSC: 11F11 11F20 11F27 11E20 11E25 11F30

Keywords: Dedekind eta function eta quotients eta products theta functions Eisenstein series Eisenstein forms Modular forms Cusp forms Fourier coefficients Fourier series

АВЅТ КАСТ

We use the theory of modular forms to give formulas for the number of representations of n by all sextenary quadratic forms with coefficients 1, 2, 3, 6. We also apply our results to write newforms in $S_3(\Gamma_0(24), \chi)$ in terms of eta quotients. © 2017 Elsevier Inc. All rights reserved.

E-mail address: selcukaygin@ntu.edu.sg.

 $[\]label{eq:https://doi.org/10.1016/j.jnt.2017.09.012} 0022-314 X @ 2017 Elsevier Inc. All rights reserved.$

1. Introduction

Let \mathbb{N} , \mathbb{N}_0 , \mathbb{Z} , \mathbb{C} and \mathbb{H} denote the sets of positive integers, non-negative integers, integers, complex numbers and the upper half plane, respectively. We use the notation $q = e(z) := e^{2\pi i z}$ with $z \in \mathbb{H}$, and so |q| < 1. Let $k, N \in \mathbb{N}$ and $\Gamma_0(N)$ be the modular subgroup defined by

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}, \ ad - bc = 1, \ c \equiv 0 \pmod{N} \right\}.$$

We write $M_k(\Gamma_0(N), \chi)$ to denote the space of modular forms of weight k for $\Gamma_0(N)$ with multiplier χ , and $E_k(\Gamma_0(N), \chi)$ and $S_k(\Gamma_0(N), \chi)$ to denote the subspaces of Eisenstein forms and cusp forms of $M_k(\Gamma_0(N), \chi)$, respectively. It is known (see [25, p. 83], [22, Theorem 2.1.7]) that

$$M_k(\Gamma_0(N), \chi) = E_k(\Gamma_0(N), \chi) \oplus S_k(\Gamma_0(N), \chi).$$
(1.1)

Let χ and ψ be primitive characters. For $n \in \mathbb{N}$ we define $\sigma_{(k,\chi,\psi)}(n)$ by

$$\sigma_{(k,\chi,\psi)}(n) = \sum_{1 \le d|n} \chi(d)\psi(n/d)d^k.$$
(1.2)

If $n \notin \mathbb{N}$ we set $\sigma_{(k,\chi,\psi)}(n) = 0$. For each quadratic discriminant t, we put $\chi_t(n) = \left(\frac{t}{n}\right)$, where $\left(\frac{t}{n}\right)$ is the Kronecker symbol defined by [23, p. 296].

Let χ and ψ be primitive Dirichlet characters such that $\chi(-1)\psi(-1) = -1$ and with conductors $L, R \in \mathbb{N}$, respectively. The weight 3 Eisenstein series are defined by

$$E_{3,\chi,\psi}(z) = c_0 + \sum_{n \ge 1} \sigma_{(2,\chi,\psi)}(n) q^n$$
(1.3)

where

$$c_0 = \begin{cases} -B_{3,\chi}/6 & \text{if } R = 1, \\ 0 & \text{if } R > 1, \end{cases}$$

and the generalized Bernoulli numbers $B_{3,\chi}$ attached to χ are defined by the following equation:

$$B_{3,\chi} = 6[x^3] \sum_{a=1}^{L} \frac{\chi(a)xe^{ax}}{e^{Lx} - 1}.$$

From this we compute

$$B_{3,\chi_{-3}} = 2/3, \ B_{3,\chi_{-4}} = 3/2, \ B_{3,\chi_{-8}} = 9, \ B_{3,\chi_{-24}} = 138.$$

Download English Version:

https://daneshyari.com/en/article/8897062

Download Persian Version:

https://daneshyari.com/article/8897062

Daneshyari.com