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We use the theory of modular forms to give formulas for the 
number of representations of n by all sextenary quadratic 
forms with coefficients 1, 2, 3, 6. We also apply our results to 
write newforms in S3(Γ0(24), χ) in terms of eta quotients.

© 2017 Elsevier Inc. All rights reserved.

E-mail address: selcukaygin@ntu.edu.sg.

https://doi.org/10.1016/j.jnt.2017.09.012
0022-314X/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jnt.2017.09.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:selcukaygin@ntu.edu.sg
https://doi.org/10.1016/j.jnt.2017.09.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2017.09.012&domain=pdf


Z.S. Aygin / Journal of Number Theory 185 (2018) 434–448 435

1. Introduction

Let N, N0, Z, C and H denote the sets of positive integers, non-negative integers, 
integers, complex numbers and the upper half plane, respectively. We use the notation 
q = e(z) := e2πiz with z ∈ H, and so |q| < 1. Let k, N ∈ N and Γ0(N) be the modular 
subgroup defined by

Γ0(N) =
{(

a b

c d

)
| a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod N)

}
.

We write Mk(Γ0(N), χ) to denote the space of modular forms of weight k for Γ0(N) with 
multiplier χ, and Ek(Γ0(N), χ) and Sk(Γ0(N), χ) to denote the subspaces of Eisenstein 
forms and cusp forms of Mk(Γ0(N), χ), respectively. It is known (see [25, p. 83], [22, 
Theorem 2.1.7]) that

Mk(Γ0(N), χ) = Ek(Γ0(N), χ) ⊕ Sk(Γ0(N), χ). (1.1)

Let χ and ψ be primitive characters. For n ∈ N we define σ(k,χ,ψ)(n) by

σ(k,χ,ψ)(n) =
∑

1≤d|n
χ(d)ψ(n/d)dk. (1.2)

If n /∈ N we set σ(k,χ,ψ)(n) = 0. For each quadratic discriminant t, we put χt(n) =
( t

n

)
, 

where 
( t

n

)
is the Kronecker symbol defined by [23, p. 296].

Let χ and ψ be primitive Dirichlet characters such that χ(−1)ψ(−1) = −1 and with 
conductors L, R ∈ N, respectively. The weight 3 Eisenstein series are defined by

E3,χ,ψ(z) = c0 +
∑
n≥1

σ(2,χ,ψ)(n)qn (1.3)

where

c0 =
{

−B3,χ/6 if R = 1,
0 if R > 1,

and the generalized Bernoulli numbers B3,χ attached to χ are defined by the following 
equation:

B3,χ = 6[x3]
L∑

a=1

χ(a)xeax

eLx − 1 .

From this we compute

B3,χ−3 = 2/3, B3,χ−4 = 3/2, B3,χ−8 = 9, B3,χ−24 = 138.
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