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COMPARISON ESTIMATES FOR LINEAR FORMS IN

ADDITIVE NUMBER THEORY

MELVYN B. NATHANSON

Abstract. Let R be a commutative ring R with 1R and with group of units

R×. Let Φ = Φ(t1, . . . , th) =
∑h

i=1 ϕiti be an h-ary linear form with nonzero
coefficients ϕ1, . . . , ϕh ∈ R. Let M be an R-module. For every subset A of M ,
the image of A under Φ is

Φ(A) = {Φ(a1, . . . , ah) : (a1, . . . , ah) ∈ Ah}.
For every subset I of {1, 2, . . . , h}, there is the subset sum sI =

∑
i∈I ϕi. Let

S(Φ) = {sI : ∅ �= I ⊆ {1, 2, . . . , h}}.
Theorem. Let Υ(t1, . . . , tg) =

∑g
i=1 υiti and Φ(t1, . . . , th) =

∑h
i=1 ϕiti be

linear forms with nonzero coefficients in the ring R. If {0, 1} ⊆ S(Υ) and
S(Φ) ⊆ R×, then for every ε > 0 and c > 1 there exist a finite R-module M
with |M | > c and a subset A of M such that Υ(A ∪ {0}) = M and |Φ(A)| <
ε|M |.

1. The problem

In 1973, Haight [2] proved that for all positive integers h and � there exist a
positive integer m and a subset A of Z/mZ such that

A−A = Z/mZ

but the h-fold sumset hA omits � consecutive congruence classes. Ruzsa [5], refining
Haight’s method, recently proved that, for every positive integer h and every ε > 0,
there exist a positive integer m and a subset A of Z/mZ such that

A−A = Z/mZ and |hA| < εm.

The difference set A−A is the image of A under the linear form Υ(t1, t2) = t1− t2
and the h-fold sumset hA is the image of A under the linear form Φ(t1, t2, . . . , th) =
t1 + t2 + · · · + th. Equivalently, Ruzsa constructed a subset A of the Z-module
M = Z/mZ such that

Υ(A) = M and |Φ(A)| < ε|M |.
This is a significant result in additive number theory. In this paper, we extend
Ruzsa’s theorem to a large class of pairs of linear forms Υ and Φ.

Let R be a commutative ring with multiplicative identity 1R �= 0. We denote the
group of units in R by R×. Associated to every sequence (ϕ1, . . . , ϕh) of nonzero
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