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We consider linear homogeneous partition inequalities of the 
form

r∑
k=1

akp(n + μk) ≤
s∑

�=1
b�p(n + ν�) , (∗)

where p(n) is the number of integer partitions of n, {a1, a2, · · ·,
ar}, {b1, b2, · · · , bs} are positive integers, and 0 ≤ μ1 < μ2 <
· · · < μr, 0 ≤ ν1 < ν2 < · · · < νs are integers. From the fact 
that limn→∞

p(n+μ)
p(n) = 1 (μ an integer) it follows that the 

inequality (∗) can only hold if 
∑r

k=1 ak ≤
∑s

�=1 b�. If the last 
relation is a strict inequality than (∗) holds for all n > N , 
for an appropriately specified N , and can be established for 
all n ≥ 1 by verifying that it holds for the finite set of cases 
specified by 1 ≤ n ≤ N . Such inequalities will be referred to 
as asymptotically trivial. Several examples of such inequalities 
are presented. The inequality (∗) is trivial if the stronger 
condition 

∑r
k=1 akp(μk − min(μ1, ν1) + 1) ≤

∑s
�=1 b� holds, 

i.e., the supremum of the left-hand side of (∗) is smaller than 
or equal to the infimum of its right-hand side. If 

∑r
k=1 ak =∑s

�=1 b� then we say that (∗) is non-trivial. In this case (∗)
can be an identity. A “conventional” proof, establishing the 
nature of (∗) for all n, is required.
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1. Introduction

In the present paper we consider linear homogeneous partition inequalities of the form

r∑
k=1

akp(n + μk) ≤
s∑

�=1

b�p(n + ν�) , (1)

where p(n) is the number of integer partitions of n, {a1, a2, · · · , ar}, {b1, b2, · · · , bs} are 
positive integers, and 0 ≤ μ1 < μ2 < · · · < μr, 0 ≤ ν1 < ν2 < · · · < νs are integers. From 
the fact that limn→∞

p(n+μ)
p(n) = 1 (μ an integer) it follows that the inequality (1) can only 

hold if 
∑r

k=1 ak ≤
∑s

�=1 b�. If the last relation is a strict inequality than (1) holds for all 
n > N , for an appropriately specified N , and can be established for all n ≥ 1 by verifying 
that it holds for all 1 ≤ n ≤ N , a task which is easily feasible for at least N ∼ 10000. 
Such inequalities will be referred to as asymptotically trivial. Several examples of such 
inequalities are presented. An argument of this type was recently used by Bessenrodt and 
Ono [3]. Admittedly, proofs of the kind described above do not provide the insight that 
a “conventional” proof often yields. However, they provide a fairly powerful generator 
of inequalities, motivating the search for more insightful “conventional” proofs. The 
inequality (1) is trivial if the stronger condition 

∑r
k=1 akp(μk−min(μ1, ν1) +1) ≤

∑s
�=1 b�

holds, i.e., the supremum of the left-hand side of (1) is smaller than or equal to the 
infimum of its right-hand side. Finally, if 

∑r
k=1 ak =

∑s
�=1 b� then we say that (1) is 

non-trivial. In this case (1) can be an identity. A “conventional” proof, establishing the 
nature of (1) for all n, is required.

The characterization of the three classes of linear partition inequalities, non-trivial, 
asymptotically trivial and trivial, is the main contribution of the present article. These 
three classes are illustrated by the inequalities

p(n) + p(n− 5) ≤ p(n− 1) + p(n− 2) , (2)

p(n) ≤ p(n− 1) + p(n− 2) , (3)

and

p(n) ≤ 2p(n− 1) , (4)

respectively. Inequality (2) is non-trivial in the sense defined above (the sum of the coef-
ficients on the left-hand side is equal to the sum of the coefficients on the right-hand side, 
so nothing can be said about the validity of this inequality by examining the asymptotic 
behavior of the partition numbers). It was proved by Merca [15] using Euler’s generating 
function for p(n), an approach that can certainly be extended to many more linear par-
tition inequalities. Inequality (2) was shown by Andrews and Merca [2] to be a member 
of an infinite family of partition inequalities, all of which are non-trivial in the sense 
defined above. While inequality (3) follows straightforwardly from inequality (2), it can 
be proved independently by noting that it is asymptotically trivial in the sense defined 
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