Journal of Number Theory ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

On the class number divisibility of pairs of imaginary quadratic fields

Yoshichika Iizuka

Department of Mathematics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan

ARTICLE INFO

Article history:
Received 16 December 2016
Received in revised form 11 May 2017
Accepted 18 August 2017
Available online xxxx
Communicated by the Principal Editors

MSC: 11R29 11R11

Keywords: Class numbers Quadratic fields

ABSTRACT

We construct an infinite family of pairs of imaginary quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{D+1})$ with $D \in \mathbb{Z}$ whose class numbers are both divisible by 3.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let l be the prime 3, 5, or 7 and let m and n integers with $m \neq 0$. Iizuka, Konomi, and Nakano [3] constructed an infinite family of pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{mD+n})$ with $D \in \mathbb{Q}$ whose class numbers are both divisible by l. For the case n=0, it is easy to see that D can be retaken in \mathbb{Z} . See Komatsu [5] and Iizuka, Konomi, and Nakano [2] (see also Komatsu [6] for a recent related result). Whereas, when $n \neq 0$,

E-mail address: iizuka@math.gakushuin.ac.jp.

https://doi.org/10.1016/j.jnt.2017.08.013

0022-314X/© 2017 Elsevier Inc. All rights reserved.

it is essential to distinguish whether D is an integer or not. The aim of the present paper is to show that D can be taken to be an integer in the above result for pairs of imaginary quadratic fields when l=3 and m=n=1. Our main result is the following theorem:

Theorem 1. There is an infinite family of pairs of imaginary quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{D+1})$ with $D \in \mathbb{Z}$ whose class numbers are both divisible by 3.

The author would like to thank S. Nakano and Y. Konomi for valuable discussions.

2. Proof of Theorem 1

Let $f(X) \in \mathbb{Z}[X]$ be an irreducible cubic polynomial and M the splitting field of f(X) over \mathbb{Q} . We denote by D(f) the discriminant of f(X). Suppose that D(f) is not a square and put $k = \mathbb{Q}(\sqrt{D(f)})$. Then M/\mathbb{Q} is an S_3 -extension, k is a quadratic field, and M/k is a cyclic extension of degree 3. If M/k is unramified, the class number of k is divisible by 3. A prime ideal of k above a prime number p is ramified in M if and only if p is totally ramified in the cubic field generated by a root of f(X) (see, for example, Kishi and Miyake [4]).

For a prime number p and an integer n, we denote by $v_p(n)$ the greatest exponent m such that $p^m \mid n$. The following lemma follows immediately from Theorem 1 in Llorente and Nart [7]:

Lemma 1. Suppose that the cubic polynomial

$$f(X) = X^3 - aX - b, \quad a, b \in \mathbb{Z}$$

is irreducible over \mathbb{Q} and that either $v_q(a) < 2$ or $v_q(b) < 3$ holds for every prime number q. Let M be the splitting field of f(X) over \mathbb{Q} . We denote by D(f) the discriminant of f(X). Suppose that D(f) is not a square and put $k = \mathbb{Q}(\sqrt{D(f)})$. Let p be a prime number and \mathfrak{p} a prime ideal of k above p.

- (i) Case $p \neq 3$. The prime ideal \mathfrak{p} is unramified in M if and only if one of the following conditions holds:
 - (a) $v_p(a) = 0$.
 - (b) $v_p(b) = 0$.
 - (c) $1 = v_p(a) < v_p(b)$.
- (ii) Case p = 3. If $3 \mid a$ and $3 \nmid b$, then \mathfrak{p} is unramified in M if and only if one of the following conditions holds:
 - (a) $a \equiv 0, b \equiv \pm 1 \pmod{9}$.
 - (b) $a \equiv 6$, $b \equiv \pm 4 \pmod{9}$.
 - (c) $a \equiv 3$, $b \equiv \pm 2 \pmod{27}$.
 - (d) $a \equiv 12, b \equiv \pm 11 \pmod{27}$.
 - (e) $a \equiv 21$, $b \equiv \pm 7 \pmod{27}$.

Download English Version:

https://daneshyari.com/en/article/8897079

Download Persian Version:

https://daneshyari.com/article/8897079

<u>Daneshyari.com</u>