Algebraic independence of the values of functions satisfying Mahler type functional equations under the transformation represented by a power relatively prime to the characteristic of the base field

Akinari Goto ${ }^{\text {a }}$, Taka-aki Tanaka ${ }^{\text {b,* }}$
a Gifukita High School, Noritakeshimizu, Gifu 502-0931, Japan
${ }^{\text {b }}$ Department of Mathematics, Keio University, Hiyoshi, Yokohama 223-8522, Japan

A R T I C L E I N F O

Article history:

Received 25 March 2017
Received in revised form 15 August
2017
Accepted 27 August 2017
Available online xxxx
Communicated by F. Pellarin

$M S C$:

primary 11J85
secondary 11T55

A B S T R A C T
We give positive characteristic analogues of complex entire functions having remarkable property that their values as well as their derivatives of any order at any nonzero algebraic numbers are algebraically independent. These results are obtained by establishing a criterion for the algebraic independence of the values of Mahler functions as well as that of the algebraic independence of the Mahler functions themselves over any function fields of positive characteristic.
© 2017 Elsevier Inc. All rights reserved.

Keywords:
Algebraic independence
Mahler functions
Positive characteristic

[^0]https://doi.org/10.1016/j.jnt.2017.08.026
0022-314X /@ 2017 Elsevier Inc. All rights reserved.

1. Introduction and the results

Some complex entire functions are known to have the property that their values as well as their derivatives of any order at any nonzero algebraic numbers are algebraically independent. One of the examples of such functions is $F(x):=\sum_{k=0}^{\infty} \alpha^{d^{k}} x^{k}$, where d is an integer greater than 1 and α is an algebraic number with $0<|\alpha|<1$. Nishioka [10] proved that the infinite subset $\left\{F^{(j)}(a) \mid j \geq 0, a \in \overline{\mathbb{Q}}^{\times}\right\}$of \mathbb{C} consisting of the values of $F(x)$ and its derivatives of any order is algebraically independent over the field \mathbb{Q} of rational numbers, where $\overline{\mathbb{Q}}^{\times}$is the set of nonzero algebraic numbers. This result was obtained by using the fact that the function $f(x, z):=\sum_{k=0}^{\infty} x^{k} z^{d^{k}}$, for which $F(x)=f(x, \alpha)$, satisfies

$$
\begin{equation*}
f(x, z)=x f\left(x, z^{d}\right)+z \tag{1}
\end{equation*}
$$

Mahler functions are those which satisfy the functional equations such as (1) or (4) below and the arithmetic properties of their complex values have been investigated by various authors. Mahler functions are also studied over base field of positive characteristic.

Let \mathbb{F}_{q} be a field with $q=p^{e}$ elements, where p is a prime and $e>0$ is an integer. We regard the principal ideal domain $A:=\mathbb{F}_{q}[\theta]$ of polynomials of the indeterminate θ with coefficients in \mathbb{F}_{q} as an analogy of the ring \mathbb{Z} of rational integers. Then the field of fractions $K:=\mathbb{F}_{q}(\theta)$ of A is an analogy of \mathbb{Q}. In this paper we consider the algebraic independence over K of the values of Mahler functions. In considering the positive characteristic analogue of complex values, we treat the completions of the field K with respect to the absolute values defined by (2) and (3) below.

The well-defined map $v_{\infty}: K \rightarrow \mathbb{Z} \cup\{\infty\}$ given by $v_{\infty}(0):=\infty$ and, for any $a=b / c$ with b and c nonzero elements of A, by

$$
v_{\infty}(a):=-\operatorname{deg}_{\theta} a=\operatorname{deg}_{\theta} c-\operatorname{deg}_{\theta} b
$$

where the right-hand side does not depend on the choice of b and c, is a valuation on K. We define the normalized absolute value $|\cdot|_{\infty}$ corresponding to v_{∞} by

$$
\begin{equation*}
|a|_{\infty}:=q^{-v_{\infty}(a)}=q^{\operatorname{deg}_{\theta} a} \quad\left(a \in K^{\times}\right), \quad|0|_{\infty}:=0 \tag{2}
\end{equation*}
$$

Moreover, we denote by v_{P} the valuation determined by the maximal ideal P of A and define the normalized absolute value $|\cdot|_{P}$ corresponding to v_{P} by

$$
\begin{equation*}
|a|_{P}:=\left(q^{\operatorname{deg}_{\theta} f}\right)^{-v_{P}(a)}=q^{-\operatorname{deg}_{\theta} f \cdot \operatorname{ord}_{f} a} \quad\left(a \in K^{\times}\right), \quad|0|_{P}:=0 \tag{3}
\end{equation*}
$$

where f is the monic irreducible polynomial which generates the principal ideal P. Then the normalized absolute values defined by (2) and (3) satisfy the product formula (6) in the next section. We denote by $|\cdot|_{v}$ the absolute value corresponding to the valuation v, where v is one of v_{∞} and v_{P} defined above, and by K_{v} the completion of K with

[^1]
https://daneshyari.com/en/article/8897097

Download Persian Version:

https://daneshyari.com/article/8897097

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: takaaki@math.keio.ac.jp (T. Tanaka).

[^1]: Please cite this article in press as: A. Goto, T. Tanaka, Algebraic independence of the values of functions satisfying Mahler type functional equations under the transformation represented by a power relatively prime to the characteristic of the base field, J. Number Theory (2018),

