ARTICLE IN PRESS

YJNTH:5856

Journal of Number Theory ••• (••••) •••-•••

On depth 2 zeta-like families $\stackrel{\bigstar}{\Rightarrow}$

Huei-Jeng Chen*, Yen-Liang Kuan

Department of Mathematics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan

ARTICLE INFO

Article history: Received 14 March 2017 Received in revised form 22 August 2017 Accepted 22 August 2017 Available online xxxx Communicated by the Principal Editors

ABSTRACT

Multizeta values for $\mathbb{F}_q[\theta]$ were initially studied by Thakur, who defined them as analogues of classical multiple zeta values of Euler. In this present paper we give certain depth 2 families of zeta-like multizeta values, namely those whose ratio to the zeta value of the same weight is rational.

© 2017 Elsevier Inc. All rights reserved.

11J91 11M32 11M38

MSC:

Keywords: Multiple zeta values Zeta-like Anderson–Thakur polynomials

1. Introduction

The study of arithmetic of zeta values begins by Euler's famous evaluations: for $m \in \mathbb{N}$,

$$\zeta(2m) = \frac{-B_{2m} \left(2\pi \sqrt{-1}\right)^{2m}}{2(2m)!},$$

* Corresponding author.

 $^{^{\}rm \pm}\,$ The authors are supproted by MOST Grant 105-2628-M002-003.

E-mail addresses: hjchen1204@ntu.edu.tw (H.-J. Chen), ylkuan@ntu.edu.tw (Y.-L. Kuan).

ARTICLE IN PRESS

where $B_{2m} \in \mathbb{Q}$ are Bernoulli numbers. Euler's formula implies that $\zeta(n)/(2\pi\sqrt{-1})^n$ is rational if and only if n is even. The multiple zeta values (abbreviate MZVs) $\zeta(s_1, \dots, s_r)$, where s_1, \dots, s_r are positive integers with $s_1 \geq 2$, are generalizations of zeta values. Here r is called the depth and $w := \sum_{i=1}^r s_i$ is called the weight of $\zeta(s_1, \dots, s_r)$. These numbers were first studied by Euler for the case of r = 2. He derived certain relations between zeta and multiple zeta values, such as $\zeta(2, 1) = \zeta(3)$. We call $\zeta(s_1, \dots, s_r)$ Eulerian (zetalike respectively) if the ratio $\zeta(s_1, \dots, s_r)/(2\pi\sqrt{-1})^w$ ($\zeta(s_1, \dots, s_r)/\zeta(w)$ respectively) is rational. It seems difficult to determine whether any given MZV is zeta-like or nonzeta-like. Brown [2, Theorem 3.3] gave a sufficient condition for zeta-like MZV's using the theory of motivic multiple zeta values.

Let $A = \mathbb{F}_q[\theta]$ be the polynomial ring in one variable over the finite field \mathbb{F}_q with quotient field K and p be the characteristic of K. Carlitz introduced and derived an analogue of Euler's formula for what we now called Carlitz zeta values $\zeta_A(n)$. Let \mathbf{C} be the Carlitz module and $\tilde{\pi} := (-\theta)^{\frac{q}{q-1}} \prod_{i=1}^{\infty} \left(1 - \frac{\theta}{\theta^{q^i}}\right)^{-1}$ be a fundamental period of \mathbf{C} , where $(-\theta)^{\frac{1}{q-1}}$ is a fixed choice of (q-1)-th root of $-\theta$. Carlitz [3] derived an analogue of Euler's formula for $\zeta_A(n)$. He showed that if $(q-1) \mid n$, then

$$\zeta_A(n) = \frac{\mathrm{BC}(n)}{\Gamma_{n+1}} \tilde{\pi}^n, \qquad (1.0.1)$$

where BC(n) $\in K$ are the Bernoulli–Carlitz numbers and $\Gamma_{n+1} \in A$ are the Carlitz factorials. Here n is called *even* if $q-1 \mid n$. Note that $\tilde{\pi}^n \in \mathbb{F}_q((\frac{1}{\theta}))$ if and only if n is *even*, and so Carlitz's result implies that $\zeta_A(n)/\tilde{\pi}^n \in K$ if and only if n is *even*.

Thakur introduced the multizeta values $\zeta_A(s_1,\ldots,s_r)$: for any *r*-tuple $\mathfrak{s} = (s_1,\ldots,s_r) \in \mathbb{N}^r$,

$$\zeta_A(\mathfrak{s}) = \zeta_A(s_1, \dots, s_r) := \sum \frac{1}{a_1^{s_1} \cdots a_r^{s_r}} \in \mathbb{F}_q((\frac{1}{\theta})),$$

where the sum is over $(a_1, \ldots, a_r) \in A^r_+$ with $\deg_{\theta} a_1 > \cdots > \deg_{\theta} a_r$. We still refer MZV's for these values. Here r is called the *depth* and $w := s_1 + \cdots + s_r$ is called the *weight* of $\zeta_A(\mathfrak{s})$. Thakur [11,12] showed that these MZV's are non-vanishing and gave interesting relations between MZV's. As in the classical case, Thakur called $\zeta_A(s_1, \ldots, s_r)$ *Eulerian* if $\zeta_A(s_1, \ldots, s_r)/\tilde{\pi}^w \in K$. On the other hand, Thakur called $\zeta_A(s_1, \ldots, s_r)$ zeta-like if $\zeta_A(s_1, \ldots, s_r)/\zeta_A(w) \in K$, where w is the weight of $\zeta_A(s_1, \ldots, s_r)$. We mention that in fact, the ratio $\zeta_A(s_1, \ldots, s_r)/\zeta_A(w)$ is known to be algebraic over K if and only if it is rational in K (see [4]). We further mention that Eulerian MZV's only occur in *even* weights (see [5]), and hence Eulerian MZV's are zeta-like by Carlitz's formula.

It is a natural question to ask how to find all Eulerian/zeta-like MZV's. Lara Rodriguez and Thakur [9] proved precise formulas for certain families of Eulerian/zeta-like MZV's, and gave conjectures on which r-tuples (s_1, \ldots, s_r) may occur for zeta-like MZV's. Their conjectures are supported by numerical data from continued fraction computations.

Please cite this article in press as: H.-J. Chen, Y.-L. Kuan, On depth 2 zeta-like families, J. Number Theory (2018), https://doi.org/10.1016/j.jnt.2017.08.027

Download English Version:

https://daneshyari.com/en/article/8897101

Download Persian Version:

https://daneshyari.com/article/8897101

Daneshyari.com