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Hegyvári and Hennecart showed that if B is a sufficiently 
large brick of a Heisenberg group, then the product set B ·B
contains many cosets of the center of the group. We give a 
new, robust proof of this theorem that extends to all extra 
special groups as well as to a large family of quasigroups.

© 2017 Published by Elsevier Inc.

1. Introduction

Let p be a prime. An extra special group G is a p-group whose center Z is cyclic of 
order p such that G/Z is an elementary abelian p-group (nice treatments of extra special 
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groups can be found in [2,6]). The extra special groups have order p2n+1 for some n ≥ 1
and occur in two families. Denote by Hn and Mn the two non-isomorphic extra special 
groups of order p2n+1. Presentations for these groups are given in [4]:

Hn = 〈a1, b1, . . . , an, bn, c | [ai, aj ] = [bi, bj ] = 1, [ai, bj ] = 1 for i �= j,

[ai, c] = [bi, c] = 1, [ai, bi] = c, api = bpi = cpi = 1 for 1 ≤ i ≤ n〉

Mn = 〈a1, b1, . . . , an, bn, c | [ai, aj ] = [bi, bj ] = 1, [ai, bj ] = 1 for i �= j,

[ai, c] = [bi, c] = 1, [ai, bi] = c, api = cpi = 1, bpi = c for 1 ≤ i ≤ n〉.

From these presentations, it is not hard to see that the center of each of these groups 
consists of the powers of c so are cyclic of order p. It is also clear that the quotient of 
both groups by their centers yield elementary abelian p-groups.

In this paper we consider the structure of products of subsets of extra special groups. 
The structure of sum or product sets of groups and other algebraic structures has a 
rich history in combinatorial number theory. One seminal result is Freiman’s theorem 
[5], which asserts that if A is a subset of integers and |A + A| = O(|A|), then A must 
be a subset of a small generalized arithmetic progression. Green and Ruzsa [7] showed 
that the same result is true in any abelian group. On the other hand, commutativity is 
important as the theorem is not true for general non-abelian groups [8]. With this in 
mind, Hegyvári and Hennecart were motivated to study what actually can be said about 
the structure of product sets in non-abelian groups.

The group H1 is the classical Heisenberg group, so the groups Hn form natural gen-
eralizations of the Heisenberg group. The group Hn has a well-known representation as 
a subgroup of GLn+2(Fp) consisting of upper triangular matrices

[x, y, z] :=
[1 x z

0 In y
0 0 1

]

where x, y ∈ F
n
p , z ∈ Fp, and In is the n × n identity matrix. Let ei ∈ F

n
p be the 

ith standard basis vector. In the presentation for Hn, ai corresponds to [ei, 0, 0], bi
corresponds to [0, ei, 0] and c corresponds to [0, 0, 1]. By matrix multiplication, we have

[x, y, z] · [x′, y′, z′] = [x + x′, y + y′, z + z′ + 〈x, y′〉]

where 〈 , 〉 denotes the usual dot product.
Let Hn be a Heisenberg group. A subset B of Hn is said to be a brick if

B = {[x, y, z] such that x ∈ X, y ∈ Y , z ∈ Z}

where X = X1 ×· · ·×Xn and Y = Y1 ×· · ·×Yn with non empty-subsets Xi, Yi, Z ⊆ Fp.



Download English Version:

https://daneshyari.com/en/article/8897107

Download Persian Version:

https://daneshyari.com/article/8897107

Daneshyari.com

https://daneshyari.com/en/article/8897107
https://daneshyari.com/article/8897107
https://daneshyari.com

