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DIVISIBILITY ON THE SEQUENCE OF PERFECT SQUARES

MINUS ONE: THE GAP PRINCIPLE

TSZ HO CHAN, STEPHEN CHOI, AND PETER CHO-HO LAM

Abstract. In this paper, we consider a gap principle when a2−1|b2−1|c2−1
with 1 < a < b < c. As a byproduct, we are led to determine the complete
set of pairs of positive integers 1 ≤ u ≤ v ≤ x such that u|v2 − 1 and v|u2 − 1
and the diophantine equation u2+v2−1 = muv. We also generalize our main
theorems to the polynomial f(n) = A(n+B)2 + C.

1. Introduction and Main Results

In a previous paper [1], the first author studied the sequence of numbers f(n) =
n2(n2 + 1) and asked

Question 1. Suppose a2(a2+1) divides b2(b2+1) with a < b. Must it be true that
there is some gap between a and b? More precisely, is it true that b > a1+λ for
some small λ > 0?

He managed to prove a gap principle with some additional requirements, namely

Theorem 1. Suppose a2(a2 + 1) divides b2(b2 + 1) with a < b, (a2, b2 + 1) =
a2/(a2, b2) and (a2 + 1, b2) = b2/(a2, b2). Then

b

a
� (log a)1/8

(log log a)12
.

One can also ask the same question for any polynomial with integral coefficients.
Here we formulate the question more precisely:

Definition 1. Let n be a positive integer and f(x) be a polynomial with integral
coefficients. Consider the set of all positive integers a0 < a1 < a2 < ... < an such
that f(ai) divides f(ai+1) for 0 ≤ i ≤ n − 1. We say that f(x) satisfies the gap
principle of order n if lim an/a0 = ∞ as a0 → ∞.

Note that the set of all such (a0, a1, ..., an) is always infinite since

f(a+ f(a)) ≡ 0 (mod f(a)).

If f(x) satisfies the gap principle of some order n, it will also satisfy the gap principle
of any larger order. Therefore we can also make the following definition:
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