An upper bound for the number of solutions of ternary purely exponential diophantine equations

Yongzhong Hu ${ }^{\text {a,* }}$, Maohua Le ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Foshan University, Foshan, Guangdong 528000, China
${ }^{\text {b }}$ Institute of Mathematics, Lingnan Normal University, Zhanjiang, Guangdong 524048, China

A R T I C L E I N F O

Article history:

Received 24 May 2016
Received in revised form 12 July
2017
Accepted 12 July 2017
Available online 25 August 2017
Communicated by the Principal Editors

MSC:
 11D61
 11J86

Keywords:

Ternary purely exponential diophantine equation
Upper bound for solution number
Application of Gel'fond-Baker method

Abstract

Let a, b, c be fixed coprime positive integers with $\min \{a, b, c\}$ >1. In this paper, combining the Gel'fond-Baker method with an elementary approach, we prove that if $\max \{a, b, c\}>$ 5×10^{27}, then the equation $a^{x}+b^{y}=c^{z}$ has at most three positive integer solutions (x, y, z).

© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let \mathbb{N} be the set of all positive integers. Let a, b, c be fixed coprime positive integers with $\min \{a, b, c\}>1$. In 1933, K. Mahler [13] used his p-adic analogue of the Thue-Siegel method to prove that the ternary purely exponential diophantine equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z}, \quad x, \quad y, \quad z \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

has only finitely many solutions (x, y, z). His method is ineffective. An effective result for solutions of (1.1) was given by A.O. Gel'fond [7]. Let $N(a, b, c)$ denote the number of solutions (x, y, z) of (1.1). As a straightforward consequence of an upper bound for the number of solutions of binary S-unit equations due to F. Beukers and H.P. Schlickewei [2], we have $N(a, b, c) \leq 2^{36}$. In recent years, many papers investigated the exact values of $N(a, b, c)$. The known results showed that (1.1) has only a few solutions for some special cases (see [5], [6], [11], [12], [14], [15], [16], [17], [18], [19], [20] and [21]). Very recently, the authors [8] proved that if a, b, c satisfy certain divisibility conditions and max $\{a, b, c\}$ is large enough, then (1.1) has at most one solution (x, y, z) with $\min \{x, y, z\}>1$. In this paper we prove a general result as follows:

Theorem 1.1. If $\max \{a, b, c\}>5 \times 10^{27}$, then $N(a, b, c) \leq 3$.
Notice that if $(a, b, c)=(3,5,2)$, then (1.1) has exactly three solutions $(x, y, z)=$ $(1,1,3),(3,1,5)$ and $(1,3,7)$. Perhaps, in general, $N(a, b, c) \leq 3$ is the best upper bound for $N(a, b, c)$.

2. An upper bound for the solutions of (1.1)

In [8], combining a lower bound for linear forms in two logarithms and an upper bound for the p-adic logarithms due to M. Laurent [9] and Y. Bugeaud [3] respectively, the authors proved that all solutions (x, y, z) of (1.1) satisfy $\max \{x, y, z\}<$ $155000(\log \max \{a, b, c\})^{3}$, where \log is used for natural logarithm. In this section, using the same method as in [8], we make a slight improvement as follows:

Theorem 2.1. All solutions (x, y, z) of (1.1) satisfy

$$
\begin{equation*}
\max \{x, y, z\}<6500(\log \max \{a, b, c\})^{3} . \tag{2.1}
\end{equation*}
$$

The proof of Theorem 2.1 depends on the following lemmas.
Lemma 2.1. ([10], Corollaire 2 et Tableau 2) Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ be positive integers with $\min \left\{\alpha_{1}, \alpha_{2}\right\} \geq 2$. Further let $\Lambda=\beta_{1} \log \alpha_{1}-\beta_{2} \log \alpha_{2}$. If $\Lambda \neq 0$, then

$$
\log |\Lambda|>-32.31\left(\log \alpha_{1}\right)\left(\log \alpha_{2}\right)\left(\max \left\{10,0.18+\log \left(\frac{\beta_{1}}{\log \alpha_{2}}+\frac{\beta_{2}}{\log \alpha_{1}}\right)\right\}\right)^{2}
$$

https://daneshyari.com/en/article/8897120

Download Persian Version:

https://daneshyari.com/article/8897120

Daneshyari.com

[^0]: * $\hat{4}$ Supported by the National Natural Science Foundation of China (No. 10971184).
 * Corresponding author.

 E-mail addresses: huuyz@aliyun.com (Y. Hu), lemaohua2008@163.com (M. Le).

