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Let n > 1 be an integer with its canonical representation, 
n = pα1

1 · pα2
2 · · · pαk

k . Put H(n) = max{α1, . . . , αk}, h(n) =
min{α1, . . . , αk}, ω(n) = k, Ω(n) = α1 + · · · + αk, f(n) =∏

d|n d and f∗(n) = f(n)
n

. Many authors deal with the statis-
tical convergence of these arithmetical functions. For instance 
the notion of normal order is defined by means of statisti-
cal convergence. The statistical convergence is equivalent with 
Id-convergence, where Id is the ideal of all subsets of positi-
ve integers having the asymptotic density zero. In this paper 
we will study I-convergence of well known arithmetical func-
tions, where I = I(q)

c = {A ⊆ N :
∑

a∈A a−q < +∞} is an 
admissible ideal on N for q ∈ (0, 1〉 such that I(q)

c � Id.
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1. Introduction

The notion of statistical convergence was introduced in [6], [24] and the notion of 
I-convergence from the paper [16] corresponds to the natural generalization of statistical 
convergence (see also [4] where I-convergence is defined by means of filter—the dual 
notion to ideal). These notions have been developed in several directions in [2], [3], [5], 
[9], [14], [15], [19], [22] and have been used in various parts of mathematics, in particular 
in number theory and ergodic theory, for example [1], [7], [10], [11], [13], [15], [20], 
[21], [23]. Recall the definition and some examples of ideals on N.

Let I ⊆ 2N. I is called an admissible ideal of subsets of positive integers, if I is 
additive (if A, B ∈ I then A ∪ B ∈ I), hereditary (if A ∈ I and B ⊂ A then B ∈ I), 
containing all singletons and it does not contain N. Here we present some examples of 
admissible ideals.

More examples can be found in the papers [11], [14] and [18].

Example 1.

a) The class of all finite subsets of N forms an admissible ideal usually denoted by If .
b) Let � be a density function on N, the set I� = {A ⊆ N : �(A) = 0} is an admis-

sible ideal. We will use namely the ideals Id, Iδ, Iu and Ih related to asymptotic, 
logarithmic, uniform and Alexander density respectively. For the definitions of these 
densities see e.g. [1], [8], [11], [14], [18] and [25].

c) For an q ∈ (0, 1〉 the set I(q)
c = {A ⊆ N :

∑
a∈A a−q < +∞} is an admissible ideal. 

The ideal I(1)
c = {A ⊆ N :

∑
a∈A a−1 < +∞} is usually denoted by Ic. It is easy 

to see, that for any q1, q2 ∈ (0, 1), q1 < q2 we have

If � I(q1)
c � I(q2)

c � Ic � Id � Iδ. (1)

d) Let N =
⋃∞

j=1 Dj be a decomposition on N (i.e. Dk ∩Dl = ∅ for k 
= l). Assume that 
Dj (j = 1, 2, . . . ) are infinite sets (e.g. we can choose Dj = {2j−1.(2s − 1) : s ∈ N}
for j = 1, 2, . . . ). Denote IN the class of all A ⊆ N such that A intersects only a finite 
number of Dj . Then IN is an admissible ideal.

Let us recall notions of I- and I∗-convergence of sequences of real numbers see [16].

Definition 2.

(i) We say that a sequence x = (xn)∞n=1 I-converges to a number L and we write 
I − lim xn = L, if for each ε > 0 the set A(ε) = {n : |xn − L| ≥ ε} belongs to the 
ideal I.

(ii) Let I be an admissible ideal on N. A sequence x = (xn)∞n=1 of real numbers is said 
to be I∗-convergent to L ∈ R, if there is a set H ∈ I, such that for M = N \H =
{m1 < m2 < · · · } we have
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