The growth of class numbers of quadratic Diophantine equations

Liang Sun
Chern Institute of Mathematics, Nankai University, 300071 Tianjin, China

A R T I C L E I N F O

Article history:

Received 3 March 2017
Received in revised form 29 July
2017
Accepted 29 July 2017
Available online xxxx
Communicated by the Principal Editors

MSC:

11 E 12
11E41
Keywords:
Growth of class number

Abstract

Let F be a totally real algebraic number field, with O_{F} the ring of algebraic integers in F, let L be an O_{F}-lattice on a d-dimensional $(d \geq 2)$ positive definite quadratic space V over F and let u_{0} be a primitive vector in L. The main objective of this paper is to study when a is a fixed (non-unit) algebraic integer in O_{F} and n is a positive rational integer, how the class numbers of lattices translation $L+\frac{u_{0}}{a^{n}}$ grow as n tends to infinity.

© 2017 Published by Elsevier Inc.

1. Introduction

In the arithmetical theory of quadratic forms, the notion of class number can be viewed as a measure of the obstruction of the local-global principal for the classical representation problem of quadratic forms. Then the computation of class numbers is an important problem in this theory. The mass formulae introduced by Minkowski in [2] and in a better form by Siegel in [5], [6] and [7] give a method for computing the class number of quadratic forms.

[^0]http://dx.doi.org/10.1016/j.jnt.2017.07.009 0022-314X/® 2017 Published by Elsevier Inc.

In [8], we reformulate Minkowski's mass formula for quadratic Diophantine equations. As an example, we apply this mass formula to calculate class numbers of quadratic Diophantine equations. In this paper, we apply this mass formula to study the growth of class numbers of certain quadratic Diophantine equations.

Throughout the paper, F will be a totally real algebraic number field with ring of algebraic integers O_{F}. Let Ω_{F} be the set of all non-trivial primes on F. F_{p} will stand for the completion of F at a prime $p \in \Omega_{F}$. Denote ∞_{F} as the set of all archimedean primes on F and $p<\infty_{F}$ for $p \in \Omega_{F} \backslash \infty_{F}$. If $p<\infty_{F}$ we let $O_{F_{p}}$ stand for the valuation ring of F_{p} and $O_{F_{p}}^{\times}$for the group of units. We also let $q_{p}=\left|O_{F_{p}} /\left(\pi_{p}\right)\right|$, the letter π_{p} denotes a choice of uniformizer at $p<\infty_{F}$, and we let ord ${ }_{p}$ refer to the discrete exponential order function with $\operatorname{ord}_{p}\left(\pi_{p}\right)=1$.

The subsequent discussion will be conducted in the geometric language of quadratic spaces and lattices, and any unexplained notations and terminologies can be found in [3].

Let V be a non-degenerate quadratic space over F with the symmetric bilinear map

$$
B: V \times V \longrightarrow F \text { with } q(x)=B(x, x)
$$

for any $x \in V$ and the special orthogonal group

$$
S O(V)=\{\sigma \in G L(V): q(\sigma x)=q(x) \text { for any } x \in V \text { and } \operatorname{det} \sigma=1\}
$$

Let $S O_{\mathbf{A}}(V)$ and $G L_{\mathbf{A}}(V)$ be the adele group of $S O(V)$ and $G L(V)$ respectively.
A lattice L on V is defined as a finitely generated O_{F}-module in V satisfying $F L=V$. We denote the localization of a lattice L in the localization V_{p} of V at p by L_{p} for $p<\infty_{F}$. We note that if $p \in \infty_{F}$, then $L_{p}=V_{p}$.

Consider a lattice L on V. For any non-zero vector u_{0} in V we define the lattice translation in V to be the set $L+u_{0}$. We can always realize a quadratic Diophantine equation as being induced from a free lattice translation in some quadratic space (see section 1 of [8]).

From Lemma 1.2 of [8], we can define the action of $S O_{\mathbf{A}}(V)$ on $L+u_{0}$.

Definition 1.1. Let $L+u_{0}$ be a lattice translation on V. Define

$$
\operatorname{gen}^{+}\left(L+u_{0}\right)=\text { the orbit of } L+u_{0} \text { under the action of } S O_{\mathbf{A}}(V)
$$

called the genus of $L+u_{0}$ and

$$
\operatorname{cls}^{+}\left(L+u_{0}\right)=\text { the orbit of } L+u_{0} \text { under the action of } S O(V)
$$

called the class of $L+u_{0}$.
The number of classes in $\operatorname{gen}^{+}\left(L+u_{0}\right)$ is called the class number of $L+u_{0}$.

https://daneshyari.com/en/article/8897123

Download Persian Version:

https://daneshyari.com/article/8897123

Daneshyari.com

[^0]: E-mail address: xiaosunliang@163.com.

