On interlacing of the zeros of a certain family of modular forms

Ekata Saha*, N. Saradha
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Mumbai, 400 005, India

A R T I C L E I N F O

Article history:

Received 24 January 2017
Received in revised form 16 July 2017
Accepted 25 July 2017
Available online 30 August 2017
Communicated by the Principal
Editors

$M S C$:

11F11
11F03
Keywords:
Modular forms
Location of zeros
Interlacing of zeros

A B S T R A C T

For $s \in\{0,4,6,8,10,14\}$, let $k=12 m(k)+s \geq 12$ be an even integer and f_{k} be a normalised modular form of weight k with real Fourier coefficients, written as

$$
f_{k}=E_{k}+\sum_{j=1}^{m(k)} a_{j}^{(k)} E_{k-12 j} \Delta^{j}
$$

Under suitable conditions on $a_{j}^{(k)}$ (rectifying an earlier result of Getz), we show that all the zeros of f_{k}, in the standard fundamental domain for the action of $\mathbf{S L}(2, \mathbb{Z})$ on the upper half plane, lie on the arc $A:=\left\{e^{i \theta}: \pi / 2 \leq \theta \leq 2 \pi / 3\right\}$. Further, we provide a criterion for a family of normalised modular forms $\left\{f_{k}\right\}_{k}$ so that the zeros of f_{k} and f_{k+12} interlace on $A^{\circ}:=\left\{e^{i \theta}: \pi / 2<\theta<2 \pi / 3\right\}$.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{H} denote the complex upper half plane. The full modular group $\mathbf{S L}(2, \mathbb{Z})$ acts on \mathbb{H} by the transformation law

[^0]$$
z \mapsto \frac{a z+b}{c z+d}
$$

for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbf{S L}(2, \mathbb{Z})$. The standard fundamental domain for this action of $\mathbf{S L}(2, \mathbb{Z})$ on \mathbb{H} is the following subset of \mathbb{H},

$$
\mathbb{F}:=\left\{|z| \geq 1,-\frac{1}{2} \leq \Re(z) \leq 0\right\} \cup\left\{|z|>1,0<\Re(z)<\frac{1}{2}\right\} .
$$

Throughout this article we take $k \geq 4$ to be an even integer. For $z \in \mathbb{H}$, the Eisenstein series of weight k for the full modular group $\mathbf{S L}(2, \mathbb{Z})$ is defined by the following absolutely convergent series,

$$
E_{k}(z):=\frac{1}{2} \sum_{\substack{c, d \in \mathbb{Z} \\(c, d)=1}} \frac{1}{(c z+d)^{k}}
$$

The Eisenstein series of weight 0 is defined by $E_{0}:=1$. The Eisenstein series E_{k} is a modular form of weight k for $\mathbf{S L}(2, \mathbb{Z})$. It is classical that the space of modular forms of weight k is generated by the Eisenstein series E_{k} and cusp forms of weight k. We write $k=12 m(k)+s$ with $s \in\{0,4,6,8,10,14\}$. We will use this notation for k throughout the article without any further mention. The unique normalised cusp form of weight 12 , denoted by Δ, is defined as follows:

$$
\Delta:=\frac{E_{4}^{3}-E_{6}^{2}}{1728}
$$

Rankin and Swinnerton-Dyer [8] proved that for $k \geq 4$, all the zeros of the Eisenstein series E_{k} lie in the arc

$$
A:=\left\{|z|=1,-\frac{1}{2} \leq \Re(z) \leq 0\right\}=\left\{e^{i \theta}: \frac{\pi}{2} \leq \theta \leq \frac{2 \pi}{3}\right\}
$$

In 2004, extending the arguments of Rankin and Swinnerton-Dyer, Getz [4, Theorem 1] gave a criterion for a normalised modular form f of weight k for $\mathbf{S L}(2, \mathbb{Z})$, written as $f=E_{k}+\sum_{j=1}^{m(k)} a_{j} E_{k-12 j} \Delta^{j}$, to have all its zeros on the $\operatorname{arc} A$, in terms of the a_{j} 's.

However, there is a rectifiable error in his proof. While estimating $H(\theta):=e^{i k \theta / 2} f\left(e^{i \theta}\right)$ for $\theta \in[\pi / 2,2 \pi / 3]$ (see [4, p. 2225, eq. (2.5)]), he used an upper bound for $R_{k-12 j}$ from $\left[4\right.$, p. 2224, eq. (2.3)] for each $1 \leq j \leq m(k)$, where $R_{k-12 j}:=e^{i(k-12 j) \theta / 2} E_{k-12 j}\left(e^{i \theta}\right)-$ $2 \cos ((k-12 j) \theta / 2)$. But this upper bound is valid if $k-12 j \geq 12$. Note that $k-12 m(k)$ is always less than 12 , unless it is 14 . We present a corrected version of his theorem below. For this we setup the following notation.

For $k=0$ or $k \geq 4$ an even integer, let the real number δ_{k} be defined as follows:

https://daneshyari.com/en/article/8897127

Download Persian Version:

https://daneshyari.com/article/8897127

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ekata@math.tifr.res.in (E. Saha), saradha@math.tifr.res.in (N. Saradha).

