

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

On interlacing of the zeros of a certain family of modular forms

Ekata Saha*, N. Saradha

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Mumbai, 400 005, India

ARTICLE INFO

Article history: Received 24 January 2017 Received in revised form 16 July 2017 Accepted 25 July 2017 Available online 30 August 2017 Communicated by the Principal Editors

MSC: 11F11 11F03

Keywords: Modular forms Location of zeros Interlacing of zeros

ABSTRACT

For $s \in \{0, 4, 6, 8, 10, 14\}$, let $k = 12m(k) + s \ge 12$ be an even integer and f_k be a normalised modular form of weight k with real Fourier coefficients, written as

$$f_k = E_k + \sum_{j=1}^{m(k)} a_j^{(k)} E_{k-12j} \Delta^j.$$

Under suitable conditions on $a_j^{(k)}$ (rectifying an earlier result of Getz), we show that all the zeros of f_k , in the standard fundamental domain for the action of $\mathbf{SL}(2,\mathbb{Z})$ on the upper half plane, lie on the arc $A := \{e^{i\theta} : \pi/2 \le \theta \le 2\pi/3\}$. Further, we provide a criterion for a family of normalised modular forms $\{f_k\}_k$ so that the zeros of f_k and f_{k+12} interlace on $A^\circ := \{e^{i\theta} : \pi/2 < \theta < 2\pi/3\}$.

@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{H} denote the complex upper half plane. The full modular group $\mathbf{SL}(2,\mathbb{Z})$ acts on \mathbb{H} by the transformation law

* Corresponding author. E-mail addresses: ekata@math.tifr.res.in (E. Saha), saradha@math.tifr.res.in (N. Saradha).

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2017.07.013} 0022-314 X @ 2017 Elsevier Inc. All rights reserved.$

E. Saha, N. Saradha / Journal of Number Theory 183 (2018) 213-232

$$z \mapsto \frac{az+b}{cz+d}$$

for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{SL}(2, \mathbb{Z})$. The standard fundamental domain for this action of $\mathbf{SL}(2, \mathbb{Z})$ on \mathbb{H} is the following subset of \mathbb{H} ,

$$\mathbb{F} := \left\{ |z| \ge 1, -\frac{1}{2} \le \Re(z) \le 0 \right\} \cup \left\{ |z| > 1, 0 < \Re(z) < \frac{1}{2} \right\}.$$

Throughout this article we take $k \ge 4$ to be an even integer. For $z \in \mathbb{H}$, the Eisenstein series of weight k for the full modular group $\mathbf{SL}(2,\mathbb{Z})$ is defined by the following absolutely convergent series,

$$E_k(z) := \frac{1}{2} \sum_{\substack{c,d \in \mathbb{Z} \\ (c,d)=1}} \frac{1}{(cz+d)^k}.$$

The Eisenstein series of weight 0 is defined by $E_0 := 1$. The Eisenstein series E_k is a modular form of weight k for $\mathbf{SL}(2,\mathbb{Z})$. It is classical that the space of modular forms of weight k is generated by the Eisenstein series E_k and cusp forms of weight k. We write k = 12m(k) + s with $s \in \{0, 4, 6, 8, 10, 14\}$. We will use this notation for k throughout the article without any further mention. The unique normalised cusp form of weight 12, denoted by Δ , is defined as follows:

$$\Delta := \frac{E_4^3 - E_6^2}{1728}.$$

Rankin and Swinnerton-Dyer [8] proved that for $k \ge 4$, all the zeros of the Eisenstein series E_k lie in the arc

$$A := \left\{ |z| = 1, -\frac{1}{2} \le \Re(z) \le 0 \right\} = \left\{ e^{i\theta} : \frac{\pi}{2} \le \theta \le \frac{2\pi}{3} \right\}.$$

In 2004, extending the arguments of Rankin and Swinnerton-Dyer, Getz [4, Theorem 1] gave a criterion for a normalised modular form f of weight k for $\mathbf{SL}(2,\mathbb{Z})$, written as $f = E_k + \sum_{j=1}^{m(k)} a_j E_{k-12j} \Delta^j$, to have all its zeros on the arc A, in terms of the a_j 's.

However, there is a rectifiable error in his proof. While estimating $H(\theta) := e^{ik\theta/2} f(e^{i\theta})$ for $\theta \in [\pi/2, 2\pi/3]$ (see [4, p. 2225, eq. (2.5)]), he used an upper bound for R_{k-12j} from [4, p. 2224, eq. (2.3)] for each $1 \leq j \leq m(k)$, where $R_{k-12j} := e^{i(k-12j)\theta/2} E_{k-12j}(e^{i\theta}) - 2\cos((k-12j)\theta/2)$. But this upper bound is valid if $k-12j \geq 12$. Note that k-12m(k) is always less than 12, unless it is 14. We present a corrected version of his theorem below. For this we setup the following notation.

For k = 0 or $k \ge 4$ an even integer, let the real number δ_k be defined as follows:

214

Download English Version:

https://daneshyari.com/en/article/8897127

Download Persian Version:

https://daneshyari.com/article/8897127

Daneshyari.com