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In this paper, we show that there are only finitely many c
such that the equation Un − Vm = c has at least two distinct 
solutions (n, m), where {Un}n�0 and {Vm}m�0 are given 
linear recurrence sequences.
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1. Introduction

A linear recurrence sequence is a sequence {Un}n�0 such that for some k � 1, we 
have

Un+k = c1Un+k−1 + · · · + ckUn

for all n � 0, where c1, . . . , ck are given complex numbers with ck �= 0. When c1, . . . , ck
are integers and U0, . . . , Uk−1 are also integers, Un is an integer for all n � 0 and we say 
that {Un}n�0 is defined over the integers. In what follows we will always assume that 
{Un}n�0 is defined over the integers.

It is known that if we write

F (X) = Xk − c1X
k−1 − · · · − ck =

t∏
i=1

(X − αi)σi ,

where α1, . . . , αt are distinct complex numbers, and σ1, . . . , σt are positive integers 
whose sum is k, then there exist polynomials a1(X), . . . , at(X) whose coefficients are 
in Q(α1, . . . , αt) such that ai(X) is of degree at most σi − 1 for i = 1, . . . , t, and such 
that furthermore the formula

Un =
t∑

i=1
ai(n)αn

i

holds for all n � 0. We may certainly assume that ai(X) is not the zero polynomial for 
any i = 1, . . . , t. We call α = α1 a dominant root of {Un}n�0, if |α1| > |α2| � . . . � |αt|. 
In this case the sequence {Un}n�0 is said to satisfy the dominant root condition.

This paper is a follow-up to our previous work [6], in which we found all integers c
admitting at least two distinct representations of the form Fn − Tm for some positive 
integers n � 2 and m � 2. Here we denote by {Fn}n�0 the sequence of Fibonacci 
numbers given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n � 0, and denote 
by {Tm}m�0 the sequence of Tribonacci numbers given by T0 = 0, T1 = T2 = 1 and 
Tm+3 = Tm + Tm+1 + Tm+2 for all m � 0. In [6] the main result is the following:

Theorem 1. The only integers c having at least two representations of the form Fn − Tm

come from the set

C = {0, 1,−1,−2,−3, 4,−5, 6, 8,−10, 11,−11,−22,−23,−41,−60,−271}.

Furthermore, for each c ∈ C all representations of the form c = Fn−Tm with integers 
n � 2 and m � 2 are obtained.
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