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In this paper, we aim to give full or partial proofs for the 
following three conjectures of V. J. W. Guo and C. Kratten-
thaler: (1) Let a > b be positive integers, α, β be any integers 
and p be a prime satisfying gcd(p, a) = 1. Then there ex-
ist infinitely many positive integers n for which 

(
an+α
bn+β

)
≡ r

(mod p) for all integers r; (2) For any odd prime p, there are 
no positive integers a > b such that 

(
an
bn

)
≡ 0 (mod pn −1) for 

all n ≥ 1; (3) For any positive integer m, there exist positive 
integers a and b such that am > b and 

(
amn
bn

)
≡ 0 (mod an −1)

for all n ≥ 1.
© 2017 Published by Elsevier Inc.

1. Introduction

Binomial coefficients constitute an important class of numbers that arise naturally 
in mathematics, namely as coefficients in the expansion of the polynomial (x + y)n. 
Accordingly, they appear in various mathematical areas. An elementary property of 
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binomial coefficients is that 
(
n
m

)
is divisible by a prime p for all 1 < m < n if and only 

if n is a power of p. A much more technical result due to Lucas asserts that
(
n

m

)
≡

(
n0

m0

)(
n1

m1

)
· · ·

(
nk

mk

)
(mod p),

in which n = n0+n1p +· · ·+nkp
k and m = m0+m1p +· · ·+mkp

k are the p-adic expansions 
of the non-negative integers n and m, respectively. We note that 0 ≤ mi, ni < p, for all 
i = 0, . . . , k. In 1819, Babbage [1] revealed the following congruences for all odd prime p:

(
2p− 1
p− 1

)
≡ 1 (mod p2).

In 1862, Wolstenholme [6] strengthened the identity of Babbage by showing that the same 
congruence holds modulo p3 for all primes p ≥ 5. This identity was further generalized by 
Ljunggren in 1952 to 

(
np
mp

)
≡

(
n
m

)
(mod p3) and even more to 

(
np
mp

)
/
(
n
m

)
≡ 1 (mod pq)

by Jacobsthal for all positive integers n > m and primes p ≥ 5, in which pq is any 
power of p dividing p3mn(n − m). Arithmetic properties of binomial coefficients are 
studied extensively in the literature and we may refer the interested reader to [6] for 
an account of Wolstenholme’s theorem. Recently, Guo and Krattenthaler [2] studied a 
similar problem and proved the following conjecture of Sun [4].

Theorem 1.1. Let a and b be positive integers. If bn +1 divides 
(
an+bn

an

)
for all sufficiently 

large positive integers n, then each prime factor of a divides b. In other words, if a has a 
prime factor not dividing b, then there are infinitely many positive integers n for which 
bn + 1 does not divide 

(
an+bn

an

)
.

They also stated several conjectures among which are the followings. We aim to prove 
or give partial proofs to these conjectures.

In Section 2, we prove Conjecture 1.2 in special cases, see Theorems 2.1 and 2.2.

Conjecture 1.2 ([2, Conjecture 7.2]). For any odd prime p, there are no positive integers 
a > b such that (

an

bn

)
≡ 0 (mod pn− 1)

for all n ≥ 1.

In Section 3, using only properties of the p-adic valuation, we give a full proof for 
Conjecture 7.3 of [2].

Conjecture 1.3 ([2, Conjecture 7.3]). For any positive integer m, there exist positive 
integers a and b such that am > b and
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