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studies an arithmetic analogue of the FEuler differential
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1. Introduction

The theory of differential equations has an arithmetic analogue in which derivatives
of functions are replaced by Fermat quotients of numbers. This arithmetic analogue was
introduced in [3]; for an exposition of part of the resulting theory we refer to [4]. The
present paper fits into the theory developed in [3,4]. However our paper is written so as
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to be entirely self-contained and, in particular, it is independent of [3,4]; the few facts
we need from [3,4] will be quickly reviewed here.

Many remarkable classical differential equations have arithmetic analogues. Examples
of such classical differential equations are: the Riccati equation [7], the Weierstrass equa-
tion [3], the Painlevé VI equation [3,5], Schwarzian equations satisfied by modular forms
[3], and linear differential equations corresponding to special connections in Riemannian
geometry (such as Chern, Levi-Civita, etc.) [6,7,2,8].

The purpose of the present paper is to develop an arithmetic analogue of the Euler
differential equations for the rigid body (the Euler top). This is a system of 3 ordinary
(non-linear) differential equations in 3 variables which is one of the simplest examples
of algebraically completely integrable systems [1]. As such its flow on 3-space, referred
to in what follows as the classical Euler flow, can be viewed as a derivation § on the
polynomial ring C[z1, 2, 3] given by the expression
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where a1, a2,a3 € C are distinct complex numbers. This flow is trivially seen to have 2
independent prime integrals
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in the sense that
0Hy =6Hy = 0. (1.3)

For generic ¢ = (c1,c2) € C2, the loci E. in 3-space, given by
Hy=c, Hy=cy, (1.4)

are affine elliptic curves. We refer to E. as the level sets of Hy, H5. Then the classical
Euler flow § is “linearized” when restricted to these level sets E. in the sense that, if
one denotes by d. the action of § as Lie derivative on the 1-forms on F, and if w, is the
canonical invariant 1-form on E. (to be defined later in the text), then

Sowe = 0. (1.5)

Here is our arithmetic analogue of the above.

Let A be a complete discrete valuation ring with maximal ideal generated by an odd
prime p and perfect residue field F = A/pA. Let a1,a2,a3 € A be distinct mod p and
consider again Hy, Hy as in (1.2). Recall from [3] that a p-derivation on a ring B (in
which p is a non-zero divisor) is a map § : B — B such that the map ¢ : B — B,
¢(b) := bP + pdb, is a ring homomorphism; ¢ is then referred to as the Frobenius lift
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