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Given two positive integers M and k, let Bk(M) be the set 
of bases q > 1 such that there exists a real number x ∈
[0, M/(q − 1)] having precisely k different q-expansions over 
the alphabet {0, 1, . . . , M}. In this paper we consider k = 2
and investigate the smallest base q2(M) of B2(M). We prove 
that for M = 2m the smallest base is

q2(M) =
m + 1 +

√
m2 + 2m + 5
2

,

and for M = 2m − 1 the smallest base q2(M) is the largest 
positive root of

x4 = (m− 1)x3 + 2mx2 + mx + 1.
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Moreover, for M = 2 we show that q2(2) is also the smallest 
base of Bk(2) for all k ≥ 3.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Fix a positive integer M . For q ∈ (1, M + 1] the sequence (di) = d1d2 . . . with each 
di ∈ {0, 1, . . . , M} is called a q-expansion of x if

x =
∞∑
i=1

di
qi
.

Here the alphabet {0, 1, . . . ,M} will be fixed throughout the paper. Clearly, x has a 
q-expansion if and only if x ∈ Iq,M := [0, M/(q − 1)].

Since the pioneering work of Rényi [19] and Parry [18], representations of real numbers 
in non-integer bases have been widely studied in the past thirty years. Different from 
integer base expansions it is well known that almost every x ∈ Iq,M has a continuum 
of q-expansions (cf. [20,5]). Moreover, for each k ∈ N ∪ {ℵ0} there exist q ∈ (1, M + 1]
and x ∈ Iq,M such that x has precisely k different q-expansions (see, e.g., [9]). For k = 1
the unique q-expansions were extensively investigated. For example, Glendinning and 
Sidorov showed in [11] that for M = 1 when the base q is close to M + 1 the set of 
x ∈ Iq,M with a unique q-expansion has positive Hausdorff dimension (for M > 1, see 
e.g., [16]). De Vries and Komornik [7] investigated the topological properties of the unique 
q-expansions. Recently, Komornik et al. [13] studied the measure theoretical aspects of 
the unique q-expansions. For more information on the unique q-expansions we refer the 
readers to [14,8,15], and the surveys [12,20].

Inspired by the papers of Sidorov [21] and Baker [3] we consider the following sets. 
For k ∈ N ∪ {ℵ0}, let

Bk(M) := {q ∈ (1,M + 1] : there exists x ∈ Iq,M having precisely

k different q-expansions} .

For M = 1 Sidorov [21] determined the smallest base q2(1) ≈ 1.71064 of B2(1), and 
proved that the set B2(1) contains an interval. Later in [4] Baker and Sidorov considered 
the smallest base of Bk(1) for k ≥ 3 and showed that they are all equal to qf (1) ≈
1.75488. Note that the golden ratio qG = (1 +

√
5 )/2 is the smallest base of Bℵ0(1) (see 

Lemma 2.2 below). Recently, Baker [3] showed that the second smallest base of Bℵ0(1) is 
qℵ0(1) ≈ 1.64541. Hence, he concluded that for any q ∈ (qG, qℵ0(1)) each point x ∈ Iq,1
either has a unique q-expansion or has a continuum of q-expansions. Based on the ideas 
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