

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

On small bases which admit points with two expansions

Derong Kong^{a,1}, Wenxia Li^b, Yuru Zou^{c,*}

 ^a School of Mathematical Science, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
^b Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200062, People's Republic of China
^c College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, People's Republic of China

A R T I C L E I N F O

Article history: Received 18 April 2016 Received in revised form 28 September 2016 Accepted 28 September 2016 Available online 14 November 2016 Communicated by D. Goss

MSC: 11A63 37B10

Keywords: Beta expansions Unique expansion Two expansions Smallest bases

ABSTRACT

Given two positive integers M and k, let $\mathcal{B}_k(M)$ be the set of bases q > 1 such that there exists a real number $x \in$ [0, M/(q-1)] having precisely k different q-expansions over the alphabet $\{0, 1, \ldots, M\}$. In this paper we consider k = 2and investigate the smallest base $q_2(M)$ of $\mathcal{B}_2(M)$. We prove that for M = 2m the smallest base is

$$q_2(M) = \frac{m+1+\sqrt{m^2+2m+5}}{2}$$

and for M = 2m - 1 the smallest base $q_2(M)$ is the largest positive root of

$$x^{4} = (m-1)x^{3} + 2mx^{2} + mx + 1.$$

 $\ast\,$ Corresponding author.

E-mail addresses: derongkong@126.com (D. Kong), wxli@math.ecnu.edu.cn (W. Li), yuruzou@szu.edu.cn (Y. Zou).

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2016.09.012} 0022-314 X @ 2016 Elsevier Inc. All rights reserved.$

 $^{^{1}}$ Current address: Mathematical Institute, University of Leiden, PO Box 9512, 2300 RA Leiden, The Netherlands.

Moreover, for M = 2 we show that $q_2(2)$ is also the smallest base of $\mathcal{B}_k(2)$ for all $k \geq 3$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Fix a positive integer M. For $q \in (1, M + 1]$ the sequence $(d_i) = d_1 d_2 \dots$ with each $d_i \in \{0, 1, \dots, M\}$ is called a *q*-expansion of x if

$$x = \sum_{i=1}^{\infty} \frac{d_i}{q^i}.$$

Here the alphabet $\{0, 1, \ldots, M\}$ will be fixed throughout the paper. Clearly, x has a q-expansion if and only if $x \in I_{q,M} := [0, M/(q-1)]$.

Since the pioneering work of Rényi [19] and Parry [18], representations of real numbers in non-integer bases have been widely studied in the past thirty years. Different from integer base expansions it is well known that almost every $x \in I_{q,M}$ has a continuum of q-expansions (cf. [20,5]). Moreover, for each $k \in \mathbb{N} \cup \{\aleph_0\}$ there exist $q \in (1, M + 1]$ and $x \in I_{q,M}$ such that x has precisely k different q-expansions (see, e.g., [9]). For k = 1the unique q-expansions were extensively investigated. For example, Glendinning and Sidorov showed in [11] that for M = 1 when the base q is close to M + 1 the set of $x \in I_{q,M}$ with a unique q-expansion has positive Hausdorff dimension (for M > 1, see e.g., [16]). De Vries and Komornik [7] investigated the topological properties of the unique q-expansions. Recently, Komornik et al. [13] studied the measure theoretical aspects of the unique q-expansions. For more information on the unique q-expansions we refer the readers to [14,8,15], and the surveys [12,20].

Inspired by the papers of Sidorov [21] and Baker [3] we consider the following sets. For $k \in \mathbb{N} \cup \{\aleph_0\}$, let

 $\mathcal{B}_k(M) := \{q \in (1, M+1]: \text{there exists } x \in I_{q,M} \text{ having precisely}$

k different q-expansions $\}$.

For M = 1 Sidorov [21] determined the smallest base $q_2(1) \approx 1.71064$ of $\mathcal{B}_2(1)$, and proved that the set $\mathcal{B}_2(1)$ contains an interval. Later in [4] Baker and Sidorov considered the smallest base of $\mathcal{B}_k(1)$ for $k \geq 3$ and showed that they are all equal to $q_f(1) \approx$ 1.75488. Note that the golden ratio $q_G = (1 + \sqrt{5})/2$ is the smallest base of $\mathcal{B}_{\aleph_0}(1)$ (see Lemma 2.2 below). Recently, Baker [3] showed that the second smallest base of $\mathcal{B}_{\aleph_0}(1)$ is $q_{\aleph_0}(1) \approx 1.64541$. Hence, he concluded that for any $q \in (q_G, q_{\aleph_0}(1))$ each point $x \in I_{q,1}$ either has a unique q-expansion or has a continuum of q-expansions. Based on the ideas Download English Version:

https://daneshyari.com/en/article/8897168

Download Persian Version:

https://daneshyari.com/article/8897168

Daneshyari.com