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Let f and g be weight k holomorphic cusp forms and let Sf (n)
and Sg(n) denote the sums of their first n Fourier coefficients. 
Hafner and Ivić [9] proved asymptotics for 

∑
n≤X |Sf (n)|2

and proved that the Classical Conjecture, that Sf (X) �
X

k−1
2 + 1

4 +ε, holds on average over long intervals.
In this paper, we introduce and obtain meromorphic continu-
ations for the Dirichlet series D(s, Sf ×Sg) =

∑
Sf (n)Sg(n)×

n−(s+k−1) and D(s, Sf × Sg) =
∑

n Sf (n)Sg(n)n−(s+k−1). 
We then prove asymptotics for the smoothed second moment 
sums 

∑
Sf (n)Sg(n)e−n/X , giving a smoothed generalization 

of [9]. We also attain asymptotics for analogous sums of nor-
malized Fourier coefficients. Our methodology extends to a 
wide variety of weights and levels, and comparison with [4] in-
dicates very general cancellation between the Rankin–Selberg 
L-function L(s, f×g) and convolution sums of the coefficients 
of f and g.
In forthcoming works, the authors apply the results of this 
paper to prove the Classical Conjecture on |Sf (n)|2 is true 
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on short intervals, and to prove sign change results on 
{Sf (n)}n∈N.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let f be a holomorphic cusp form on a congruence subgroup Γ ⊆ SL2(Z) and of 
positive weight k, where k ∈ Z ∪ (Z + 1

2 ). Let the Fourier expansion of f at ∞ be given 
by

f(z) =
∑
n≥1

a(n)e(nz),

where e(z) = e2πiz. In this paper, we consider upper bounds for the second moment of 
the partial sums of the Fourier coefficients,

Sf (n) :=
∑
m≤n

a(m).

Bounds on the coefficients a(n) are of great interest and have wide application. 
The famous Ramanujan–Petersson conjecture, which was proven to hold for integral 
weight holomorphic cusp forms as a consequence of Deligne’s proof of the Weil Con-
jecture [6], gives us that a(n) � n

k−1
2 +ε and from this one might naively assume 

Sf (X) � X
k−1
2 +1+ε. However, there is significant cancellation in the sum and we expect 

the far better bound,

Sf (X) � X
k−1
2 + 1

4+ε, (1.1)

which we refer to as the “Classical Conjecture,” echoing Hafner and Ivić in their work [9].
Chandrasekharan and Narasimhan, as a consequence of their much broader work on 

the average order of arithmetical functions [5,4], proved that the Classical Conjecture is 
true on average by showing that

∑
n≤X

|Sf (n)|2 = CXk−1+ 3
2 + B(X), (1.2)

where B(x) is an error term,

B(X) =

⎧⎨
⎩
O(Xk log2(X))
Ω
(
Xk− 1

4
(log log log X)3

log X

)
,

(1.3)

and C is the constant,
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