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Distinct distances on regular varieties over finite fields

Do Duy Hieu Pham Van Thang

Abstract

In this paper we study some generalized versions of a recent result due to Covert,
Koh, and Pi (2015). More precisely, we prove that if a subset E in a regular variety

satisfies |E| � q
d−1
2

+ 1
k−1 , then

Δk,F (E) :=
{
F (x1 + · · ·+ xk) : xi ∈ E , 1 ≤ i ≤ k

}
⊇ Fq \ {0},

for some certain families of polynomials F (x) ∈ Fq[x1, . . . , xd].

1 Introduction

Let Fq be a finite field of order q, where q is a prime power. Let D(x) = x2
1 + · · ·+ x2

d be
a polynomial in Fq[x1, . . . , xd]. For E ⊂ Fd

q , we define the D-distance set of E to be

Δ(E) = {D(x− y) : x,y ∈ E} .

There are various papers studying the cardinality of Δ(E), see for example [3, 9, 5, 4,
10, 12] and references therein. In this paper, we are interested in the case when E is a
subset in a regular variety. Let us first start with a definition of regular varieties which is
taken from [4]

Definition 1.1. For E ⊆ Fd
q , let 1E denote the characteristic function on E. Let F (x) ∈

Fq[x1, . . . , xd] be a polynomial. The variety V := {x ∈ Fd
q : F (x) = 0} is called a regular

variety if |V| � qd−1 and 1̂V(m) 	 q−(d+1)/2 for all m ∈ Fd
q \ 0, where

1̂V(m) =
1

qd

∑
x∈Fd

q

χ(−m · x)1V(x).

Here and throughout, X � Y means that there exist positive absolute constants C1

and C2 which do not depend on X, Y , and q such that C1Y < X < C2Y , X 	 Y means
that there exists a positive absolute constant C that does not depend on X, Y and q such
that X ≤ CY , and X = o(Y ) means that X/Y → 0 as q → ∞, where X, Y are viewed
as functions in q.

There are several examples of regular varieties as follows:
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