Journal of Number Theory • • • (• • • •) • • • - • •

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Supercongruences arising from basic hypergeometric series

Bing He

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China

ARTICLE INFO

Article history:
Received 5 July 2016
Received in revised form 24 August 2016
Accepted 2 September 2016
Available online xxxx
Communicated by D. Goss

MSC:

Primary 11A07, 33D15 Secondary 33C20, 33B15

Keywords:

Basic hypergeometric series Hypergeometric series p-Adic Gamma function Supercongruence

ABSTRACT

We employ some formulas on basic hypergeometric series and hypergeometric series and the p-adic Gamma function to establish several new supercongruences.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Supercongruences are congruences which happen to hold modulo some higher power of a prime p. The topic of supercongruences is related to the p-adic Gamma function, elliptic curves, Gauss and Jacobi sums, hypergeometric series, modular forms, Calabi–Yau manifolds, many special polynomials and some sophisticated combinatorial identities

E-mail addresses: yuhe001@foxmail.com, yuhelingyun@foxmail.com.

http://dx.doi.org/10.1016/j.jnt.2016.09.029

0022-314X/© 2016 Elsevier Inc. All rights reserved.

2

involving harmonic numbers (see, for example, [13]). Many supercongruences were conjectured by a lot of mathematicians including van Hamme [18], Zudilin [19], Chan et al. [1], Z.-W. Sun [16,17] and Z.-H. Sun [14,15]. In particular, using a sequence of orthogonal polynomials, van Hamme [18] set up the following congruence

$$\sum_{k=0}^{\frac{p-1}{2}} (4k+1) \binom{-1/2}{k}^4 \equiv p \pmod{p^3}$$
 (1.1)

for each $p \geq 3$. Here and below, we use the notation $A \equiv B \pmod{p^l}$ if $(A - B)/p^l$ is a p-integer for $A, B \in \mathbb{Q}$. We shall give a new proof of (1.1) in the sequel.

In [8], applying some hypergeometric evaluation identities, Long obtained several supercongruences related to special valuations of truncated hypergeometric series. For example, she employed a strange evaluation of Gosper to get the following supercongruences conjectured by van Hamme [18, (J.2)]: for any prime p > 3, we have

$$\sum_{k=0}^{\frac{p-1}{2}} (-1)^k \frac{6k+1}{4^k} \binom{-1/2}{k}^3 \equiv -\frac{p}{\Gamma_p(\frac{1}{2})^2} \pmod{p^3}$$

where $\Gamma_p(x)$ is the *p*-adic Gamma function (see Section 2). In 2014, using *p*-adic Gamma function and formulas on hypergeometric series, Long and Ramakrishna [9] established many supercongruences. In particular, they proved that for any prime p > 5, there hold

$$\sum_{k=0}^{p-1} (6k+1) \binom{-1/3}{k}^6 \equiv \begin{cases} -p\Gamma_p(\frac{1}{3})^9 & \text{if } p \equiv 1 \pmod{6} \\ -\frac{10}{27} p^4 \Gamma_p(\frac{1}{3})^9 & \text{if } p \equiv 5 \pmod{6} \end{cases} \pmod{p^6}$$

and

$${}_3F_2 \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ & 1 & 1 \end{pmatrix}_{p-1} \equiv \begin{cases} \Gamma_p(\frac{1}{3})^6 \pmod{p^3} & \text{if } p \equiv 1 \pmod{6} \\ -\frac{p^2}{3}\Gamma_p(\frac{1}{3})^6 \pmod{p^3} & \text{if } p \equiv 5 \pmod{6} \end{cases},$$

where $r_{+1}F_s(\cdot)_n$ is the truncated hypergeometric series given by

$$_{r+1}F_s \begin{pmatrix} a_0 & a_1 & \dots & a_r \\ b_1 & b_2 & \dots & b_s \end{pmatrix} := \sum_{k=0}^n \frac{(a_0)_k (a_1)_k \cdots (a_r)_k}{k! (b_1)_k \cdots (b_s)_k} z^k$$

and $(z)_n$ is defined by

$$(z)_0 = 1, (z)_n = z(z+1)\cdots(z+n-1) \text{ for } n \ge 1.$$

Some other supercongruences on truncated hypergeometric series were obtained by different authors (see, for example, [4-6,10-12]).

Motivated by the work of Long [8] and Long and Ramakrishna [9], we shall establish the following supercongruence which appears to be new.

Download English Version:

https://daneshyari.com/en/article/8897223

Download Persian Version:

https://daneshyari.com/article/8897223

<u>Daneshyari.com</u>