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We employ some formulas on basic hypergeometric series and 
hypergeometric series and the p-adic Gamma function to es-
tablish several new supercongruences.
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1. Introduction

Supercongruences are congruences which happen to hold modulo some higher power 
of a prime p. The topic of supercongruences is related to the p-adic Gamma function, el-
liptic curves, Gauss and Jacobi sums, hypergeometric series, modular forms, Calabi–Yau 
manifolds, many special polynomials and some sophisticated combinatorial identities 
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involving harmonic numbers (see, for example, [13]). Many supercongruences were con-
jectured by a lot of mathematicians including van Hamme [18], Zudilin [19], Chan et 
al. [1], Z.-W. Sun [16,17] and Z.-H. Sun [14,15]. In particular, using a sequence of or-
thogonal polynomials, van Hamme [18] set up the following congruence
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for each p ≥ 3. Here and below, we use the notation A ≡ B (mod pl) if (A −B)/pl is a 
p-integer for A, B ∈ Q. We shall give a new proof of (1.1) in the sequel.

In [8], applying some hypergeometric evaluation identities, Long obtained several su-
percongruences related to special valuations of truncated hypergeometric series. For 
example, she employed a strange evaluation of Gosper to get the following supercon-
gruences conjectured by van Hamme [18, (J.2)]: for any prime p > 3, we have
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where Γp(x) is the p-adic Gamma function (see Section 2). In 2014, using p-adic Gamma 
function and formulas on hypergeometric series, Long and Ramakrishna [9] established 
many supercongruences. In particular, they proved that for any prime p ≥ 5, there hold
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where r+1Fs(·)n is the truncated hypergeometric series given by
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and (z)n is defined by

(z)0 = 1, (z)n = z(z + 1) · · · (z + n− 1) for n ≥ 1.

Some other supercongruences on truncated hypergeometric series were obtained by dif-
ferent authors (see, for example, [4–6,10–12]).

Motivated by the work of Long [8] and Long and Ramakrishna [9], we shall establish 
the following supercongruence which appears to be new.
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