Journal of Pure and Applied Algebra ••• (••••) •••-•••

FLSEVIER

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

On Brauer p-dimensions and absolute Brauer p-dimensions of Henselian fields

Ivan D. Chipchakov

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

ARTICLE INFO

Article history: Received 18 January 2016 Received in revised form 24 September 2017 Available online xxxx Communicated by V. Suresh

MSC:

Primary: 16K50; 12J10; secondary: 12E15; 12F12

ABSTRACT

This paper determines the Brauer p-dimension $\operatorname{Brd}_p(K)$ and the absolute Brauer p-dimension $\operatorname{abrd}_p(K)$ of a Henselian valued field (K,v), for a prime $p \neq \operatorname{char}(\widehat{K})$, under restrictions on the residue field \widehat{K} , such as the condition $\operatorname{abrd}_p(\widehat{K}) = 0$. It describes the set Σ_0 of sequences $\operatorname{abrd}_p(E)$, $\operatorname{Brd}_p(E)$, $p \in \mathbb{P}$, where \mathbb{P} is the set of prime numbers and E runs across the class of Henselian fields with $\operatorname{char}(\widehat{E}) = 0$ and a projective absolute Galois group $\mathcal{G}_{\widehat{E}}$. Specifically, Σ_0 contains a sequence $a_p,b_p \in \mathbb{N} \cup \{0,\infty\},\ p \in \mathbb{P}$, whenever $a_2 \leq 2b_2$ and $a_p \geq b_p$, for each p. Similar results are obtained in characteristic q > 0.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let E be a field, s(E) the class of finite-dimensional associative central simple E-algebras, d(E) the subclass of division algebras $D \in s(E)$, and for each $A \in s(E)$, let [A] be the equivalence class of A in the Brauer group $\operatorname{Br}(E)$. By Wedderburn's Structure Theorem (cf. [32], Sect. 3.5), [A] has a representative $D_A \in d(E)$ which is uniquely determined by A, up-to an E-isomorphism; this implies the dimension [A:E] is a square of a positive integer $\deg(A)$, the degree of A. Also, it is known that $\operatorname{Br}(E)$ is an abelian torsion group, so it decomposes into the direct sum of its p-components $\operatorname{Br}(E)_p$, taken over the set $\mathbb P$ of prime numbers (see [32], Sect. 14.4). The Schur index $\operatorname{ind}(D) = \deg(D_A)$ and the exponent $\exp(A)$, i.e. the order of [A] in $\operatorname{Br}(E)$ (called also a period of A), are important invariants of both D_A and [A]. Their general relations and behaviour under scalar extensions of finite degrees are described as follows (cf. [32], Sects. 13.4, 14.4 and 15.2):

(1.1) (a) $\exp(A) \mid \operatorname{ind}(A)$ and $p \mid \exp(A)$, for each $p \in \mathbb{P}$ dividing $\operatorname{ind}(A)$. For any $B \in s(E)$ with $g.c.d\{\operatorname{ind}(B),\operatorname{ind}(A)\} = 1$, $\operatorname{ind}(A \otimes_E B) = \operatorname{ind}(A).\operatorname{ind}(B)$; when $A, B \in d(E)$, the tensor product $A \otimes_E B$ lies in d(E);

E-mail address: chipchak@math.bas.bg.

https://doi.org/10.1016/j.jpaa.2018.02.032

0022-4049/© 2018 Elsevier B.V. All rights reserved.

(b) $\operatorname{ind}(A)$ and $\operatorname{ind}(A \otimes_E R)$ divide $\operatorname{ind}(A \otimes_E R)[R:E]$ and $\operatorname{ind}(A)$, respectively, for each finite field extension R/E of degree [R:E].

As shown by Brauer (see, e.g., [32], Sect. 19.6), there exists a field F, such that d(F) contains an algebra $D_{m,n}$ with $\exp(D_{m,n}) = m$ and $\operatorname{ind}(D_{m,n}) = n$, whenever (n,m) is a Brauer pair, i.e. $n, m \in \mathbb{N}, m \mid n$, and $p' \mid m$ in case $p' \in \mathbb{P}$ and $p' \mid n$. It is known, however, that index-exponent relations over a number of frequently used fields are subject to much tougher restrictions than those described by (1.1) (a). The Brauer p-dimensions $\operatorname{Brd}_p(E)$, $p \in \mathbb{P}$, of a field E and their supremum $\operatorname{Brd}(E)$, the Brauer dimension of E, contain essential information about the Brauer pairs $(\operatorname{ind}(A), \exp(A))$, $A \in s(E)$. We say that $\operatorname{Brd}_p(E)$ is finite and equal to n, if n is the least integer ≥ 0 satisfying the divisibility condition $\operatorname{ind}(D) \mid \exp(D)^n$, for each $D \in d(E)$ with $[D] \in \operatorname{Br}(E)_p$. When no such n exists, we put $\operatorname{Brd}_p(E) = \infty$. It follows from (1.1) (a) that $\operatorname{Brd}(E) \leq 1$ if and only if $\operatorname{ind}(D) = \exp(D)$, for each $D \in d(E)$. We have $\operatorname{Brd}_p(E) = 0$, for a given $p \in \mathbb{P}$, if and only if $\operatorname{Br}(E)_p = \{0\}$; in particular, $\operatorname{Brd}(E) = 0 \leftrightarrow \operatorname{Br}(E) = \{0\}$.

By an absolute Brauer p-dimension of E, we mean the supremum $\operatorname{abrd}_p(E) = \sup\{\operatorname{Brd}_p(R) \colon R \in \operatorname{Fe}(E)\}$, where $\operatorname{Fe}(E)$ is the set of finite extensions of E in its separable closure E_{sep} . The absolute Brauer dimension of E is defined by $\operatorname{abrd}(E) = \sup\{\operatorname{Brd}(R) \colon R \in \operatorname{Fe}(E)\}$. When $\operatorname{abrd}_p(E) = 0$, the p-cohomological dimension $\operatorname{cd}_p(\mathcal{G}_E)$ of the absolute Galois group $\mathcal{G}_E = \mathcal{G}(E_{\operatorname{sep}}/E)$ is ≤ 1 , and the converse holds if E is perfect or $p \neq \operatorname{char}(E)$ (see [16], Theorem 6.1.8, or [35], Ch. II, 3.1). We have $\operatorname{Brd}_p(E) = \operatorname{abrd}_p(E) = 1$, $p \in \mathbb{P}$, if E is a global or local field (see [33], (31.4) and (32.19)), or the function field of an algebraic surface over an algebraically closed field E_0 [18], [24]. Then $\operatorname{Br}(E)_p$, $p \in \mathbb{P}$, possess nonzero divisible subgroups (see [33], (31.8) and (32.13), [28], (16.1), and [32], Sect. 15.1, Corollary a), so (n,n), $n \in \mathbb{N}$, are all index-exponent E-pairs. When E_1 is the function field of an algebraic curve over a perfect pseudo algebraically closed (PAC) field E_0 , $\operatorname{Brd}_p(E_1) = \operatorname{abrd}_p(E_1) = \operatorname{cd}_p(\mathcal{G}_{E_0})$, $p \in \mathbb{P}$ [11]. Note also that $\operatorname{abrd}_p(F_k) < p^{k-1}$, $p \in \mathbb{P}$, if F_k is a field of C_k -type, for some $k \in \mathbb{N}$ [27].

This paper studies the values of sequences $\operatorname{abrd}_p(E)$, $\operatorname{Brd}_p(E)$, $p \in \mathbb{P}$, of fields E. It presents a research motivated by problems concerning index-exponent relations and Brauer p-dimensions of finitely-generated field extensions. One of these problems, posed in [2], Sect. 4, can be stated as follows:

(1.2) Prove whether the class of fields of finite Brauer dimensions is closed under the formation of finitely-generated field extensions.

2. Statements of the main results

The interest in the p-dimensions $\operatorname{abrd}_p(E)$, $\operatorname{Brd}_p(E)$, $p \in \mathbb{P}$, of a field E is due to the fact that $\operatorname{abrd}_p(E)$ is a lower bound of $\operatorname{Brd}_p(F)$, for any $p \in \mathbb{P}$ and every finitely-generated purely transcendental extension F/E (see [6], Theorem 2.1). Our first main result, stated below, describes the set of sequences $\operatorname{abrd}_p(E)$, $\operatorname{Brd}_p(E)$, $p \in \mathbb{P}$, defined over the class of fields E of zero characteristic, for which $\operatorname{Brd}_2(E) = \infty$ or $\operatorname{abrd}_2(E) \leq 2\operatorname{Brd}_2(E) < \infty$ (this generalizes [5], Theorem 2.3). It does the same in characteristic q > 0, for a large class of fields containing finitely many roots of unity:

Theorem 2.1. Let $(\bar{a}, \bar{b}) = a_p, b_p \in \mathbb{N}_{\infty}$: $p \in \mathbb{P}$, be a sequence with $a_p \geq b_p$, for each p, where $\mathbb{N}_{\infty} = \mathbb{N} \cup \{0, \infty\}$. Let also $a_2 \leq 2b_2$ or $b_2 = \infty$. Then:

- (a) There exists a field ∇_0 , such that $\operatorname{char}(\nabla_0) = 0$ and $(\operatorname{abrd}_p(\nabla_0), \operatorname{Brd}_p(\nabla_0)) = (a_p, b_p)$, for every $p \in \mathbb{P}$;
- (b) There is a field ∇_q with $\operatorname{char}(\nabla_q) = q > 0$ and $(\operatorname{abrd}_p(\nabla_q), \operatorname{Brd}_p(\nabla_q)) = (a_p, b_p), \ p \in \mathbb{P}$, provided that $b_q \leq a_q \leq b_q + 1$ if $b_q < \infty$, that $a_p = 0$ whenever $b_p = 0$, and $a_p \leq 2b_p$ whenever $p \mid (q-1)$ and $b_p < \infty$.

It seems unknown whether there is a field E containing a primitive p-th root of unity, and such that $\operatorname{abrd}_p(E) > 1 + 2\operatorname{Brd}_p(E)$, for some $p \in \mathbb{N}$. Therefore, it is worth noting that the fields ∇_0 and ∇_q whose existence is obtained by our proof of Theorem 2.1 have also the following properties (see page 18):

Download English Version:

https://daneshyari.com/en/article/8897242

Download Persian Version:

https://daneshyari.com/article/8897242

Daneshyari.com