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THE BEHAVIOR OF DIFFERENTIAL FORMS UNDER PURELY
INSEPARABLE EXTENSIONS

ROBERTO ARAVIRE, AHMED LAGHRIBI, AND MANUEL O’RYAN

ABSTRACT. Let F be a field of characteristic 2. In this paper we give a complete

computation of the kernel of the homomorphism Hm+1
2 (F ) −→ Hm+1

2 (L)
induced by scalar extension, where L/F is a purely inseparable extension (of any

degree), Hm+1
2 (F ) is the cokernel of the Artin-Schreier operator ℘ : Ωm

F −→
Ωm

F /dΩm−1
F given by: x dx1

x1
∧· · ·∧ dxm

xm
�→ (x2−x) dx1

x1
∧· · ·∧ dxm

xm
+dΩm−1

F ,

where Ωm
F is the space of absolute m-differential forms over F and d is the

differential operator. Other related results are included.

1. INTRODUCTION

Let F be a field of characteristic 2. For any integer m ≥ 1, let Ωm
F = ∧mΩ1

F

denote the space of absolute m-differential forms (Ω0
F = F ), where Ω1

F is the

F -vector space generated by the symbols dx, x ∈ F , subject to the relations:

d(x+y) = dx+dy and d(xy) = xdy+ydx for x, y ∈ F . In particular, there is an

F 2-linear map F −→ Ω1
F , given by: x �→ dx. This map extends to the differential

operator d : Ωm
F −→ Ωm+1

F given by: d(xdx1∧· · ·∧dxm) = dx∧dx1∧· · ·∧dxm.

The Artin-Schreier operator ℘ : Ωm
F −→ Ωm

F /dΩm−1
F is defined by: x dx1

x1
∧ · · · ∧

dxm
xm

�→ (x2 − x) dx1
x1

∧ · · · ∧ dxm
xm

+ dΩm−1
F , and the cokernel of this operator is

denoted by Hm+1
2 (F ).

For any field extension L/F , we have a group homomorphism Hm+1
2 (F ) −→

Hm+1
2 (L) induced by the inclusion F ⊂ L. An important problem consists in

computing the kernel Hm+1
2 (L/F ) of this homomorphism. The motivation of

considering this problem is the computation of the (graded-)Witt kernel for the

extension L/F which reduces to the computation of Hm+1
2 (L/F ) by a celebrated

result of Kato [11]. Up to now, the kernel Hm+1
2 (L/F ) is known in the following

cases:

(a) L is the function field of a projective F -quadric given by a bilinear Pfister form

of arbitrary dimension, or a quadratic Pfister form of dimension 2k such that m ≤ k
[3], [7, See after Question 8.1].

(b) L is a quadratic extension of F [2], [3].
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