# Braces and symmetric groups with special conditions 

Ferran Cedó ${ }^{\mathrm{a}, 1}$, Tatiana Gateva-Ivanova ${ }^{\mathrm{b}, *, 2}$, Agata Smoktunowicz ${ }^{\mathrm{c}, 3}$<br>${ }^{\text {a }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain<br>${ }^{\mathrm{b}}$ American University in Bulgaria, 2700 Blagoevgrad, and Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria<br>${ }^{\text {c }}$ School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The Kings<br>Buildings, Mayfield Road, EH9 3JZ, Edinburgh, United Kingdom

A R T I C L E I N F O

## Article history:

Received 14 April 2017
Received in revised form 6 December
2017
Available online xxxx
Communicated by A. Solotar

## MSC:

16T25; 16W22; 16N20; 16N40;
20F16; 81R50


#### Abstract

We study left braces satisfying special conditions, or identities. We are particularly interested in the impact of conditions like Raut and lri on the properties of the left brace and its associated solution of the Yang-Baxter equation (YBE). We show that the solution $\left(G, r_{G}\right)$ of the YBE associated to the structure group $G=G(X, r)$ (with the natural structure of a left brace) of a nontrivial solution ( $X, r$ ) of the YBE has multipermutation level 2 if and only if $G$ satisfies lri. It is known that every (left) brace with lri satisfies condition Raut. We prove that for a graded Jacobson radical ring with no elements of additive order two the conditions lri and Raut are equivalent. We construct a finite two-sided brace with condition Raut which does not satisfy lri. We show that a finitely generated two-sided brace which satisfies lri has a finite multipermutation level which is bounded by the number of its generators.


© 2018 Elsevier B.V. All rights reserved.

## 1. Introduction

Braces where introduced by Rump [10] as a generalization of Jacobson radical rings to study involutive non-degenerate set-theoretic solutions of the Yang-Baxter equation, an important equation in Mathematical Physics that lies in the foundation of quantum groups [8]. A close relation between braces and symmetric groups (involutive braided groups, [13]) was shown by the second author in [6].

Drinfeld [3] suggested to study set-theoretic solutions of the Yang-Baxter equation, that is a pair $(X, r)$, where $X$ is a nonempty set and $r: X \times X \longrightarrow X \times X$ is a bijective map such that the braid relation

[^0]https://doi.org/10.1016/j.jpaa.2018.02.012
0022-4049/© 2018 Elsevier B.V. All rights reserved.
$$
r_{1} \circ r_{2} \circ r_{1}=r_{2} \circ r_{1} \circ r_{2}
$$
holds in $X^{3}$, where $r_{1}=r \times \operatorname{id}_{X}: X^{3} \longrightarrow X^{3}$ and $r_{2}=\operatorname{id}_{X} \times r: X^{3} \longrightarrow X^{3}$.
A solution $(X, r)$ is involutive if $r^{2}=\operatorname{id}_{X^{2}}$. We shall write
$$
r(a, b)=\left({ }^{a} b, a^{b}\right) \quad \text { for } a, b \in X .
$$

Consider the maps $\mathcal{L}_{x}, \mathcal{R}_{x}: X \rightarrow X$ defined by

$$
\mathcal{L}_{x}(y)={ }^{x} y \quad \text { and } \quad \mathcal{R}_{x}(y)=y^{x},
$$

for all $x, y \in X$. A solution $(X, r)$ is non-degenerate if the maps $\mathcal{L}_{x}$ and $\mathcal{R}_{x}$ are bijective for all $x \in X$.
Convention. In this paper "a solution" means "an involutive non-degenerate set-theoretic solution of the Yang-Baxter equation".

Recall that a left brace is a set $B$ joint with two binary operations, a sum + and a multiplication $\cdot$, such that $(B,+)$ is an abelian group, $(B, \cdot)$ is a group and

$$
\begin{equation*}
a \cdot(b+c)+a=a \cdot b+a \cdot c, \tag{1.1}
\end{equation*}
$$

for all $a, b, c \in B$. A right brace is defined similarly, but replacing the equality (1.1) by $(b+c) \cdot a+a=b \cdot a+c \cdot a$. If $(B,+, \cdot)$ is both a left and a right brace (for the same operations), then it is called a two-sided brace.

It is known that if $B$ is a left brace, and 0 and 1 , respectively, denote the neutral elements with respect to the two operations " + " and "." in $B$, then $0=1$.

In any left brace $B$ one defines the operation $*$ by the rule:

$$
\begin{equation*}
a * b=a \cdot b-a-b, a, b \in B . \tag{1.2}
\end{equation*}
$$

Remark 1.1. It is easy to check that $*$ is left distributive with respect to the sum + . Moreover, $(B,+, \cdot)$ is a two-sided brace if and only if

$$
\begin{equation*}
(a+b) * c=a * c+b * c, \quad \forall a, b, c \in B \tag{1.3}
\end{equation*}
$$

In general, the operation $*$ is not right distributive, nor associative, but it satisfies the following condition

$$
\begin{equation*}
(a * b+a+b) * c=a *(b * c)+a * c+b * c, \quad \forall a, b, c \in B, \tag{1.4}
\end{equation*}
$$

see the original definition of right brace of Rump [10, Definition 2]. Moreover, $(B,+, \cdot)$ is a two-sided brace if and only if $(B,+, *)$ is a Jacobson radical ring, [10].

Every left brace $B$ has a canonically associated solution of the $Y B E$, denoted by $\left(B, r_{B}\right)$, where

$$
\begin{array}{rlll}
r_{B}: & B \times B & \longrightarrow & B \times B \\
& (a, b) & \mapsto & \left({ }^{a} b, a^{b}\right),
\end{array}
$$

with ${ }^{a} b:=a b-a$ and $a^{b}:=(a b-a)^{-1} a b$, for all $a, b \in B$. Moreover, the map

$$
\begin{array}{rllr}
\mathcal{L}: \quad(B, \cdot) & \longrightarrow & \operatorname{Aut}(B,+) \\
a & \mapsto & \mathcal{L}_{a}: B \rightarrow B \\
& & b \mapsto{ }^{a} b
\end{array}
$$

is a homomorphism of groups (see [2]).

# https://daneshyari.com/en/article/8897278 

Download Persian Version:

## https://daneshyari.com/article/8897278

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: cedo@mat.uab.cat (F. Cedó), Tatyana@aubg.edu (T. Gateva-Ivanova), A.Smoktunowicz@ed.ac.uk (A. Smoktunowicz).

    1 The first author was partially supported by the grants MINECO-FEDER MTM2014-53644-P and MTM2017-83487-P (Spain).
    2 The second author was partially supported by Grant I $02 / 18$ of the Bulgarian National Science Fund, by ICTP, Trieste, and by Max-Planck Institute for Mathematics, Bonn.
    ${ }^{3}$ The third author was supported by ERC Advanced grant 320974.

