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We study left braces satisfying special conditions, or identities. We are particularly 
interested in the impact of conditions like Raut and lri on the properties of the left 
brace and its associated solution of the Yang–Baxter equation (YBE). We show 
that the solution (G, rG) of the YBE associated to the structure group G = G(X, r)
(with the natural structure of a left brace) of a nontrivial solution (X, r) of the YBE 
has multipermutation level 2 if and only if G satisfies lri. It is known that every 
(left) brace with lri satisfies condition Raut. We prove that for a graded Jacobson 
radical ring with no elements of additive order two the conditions lri and Raut are 
equivalent. We construct a finite two-sided brace with condition Raut which does not 
satisfy lri. We show that a finitely generated two-sided brace which satisfies lri has 
a finite multipermutation level which is bounded by the number of its generators.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Braces where introduced by Rump [10] as a generalization of Jacobson radical rings to study involutive 
non-degenerate set-theoretic solutions of the Yang–Baxter equation, an important equation in Mathematical 
Physics that lies in the foundation of quantum groups [8]. A close relation between braces and symmetric 
groups (involutive braided groups, [13]) was shown by the second author in [6].

Drinfeld [3] suggested to study set-theoretic solutions of the Yang–Baxter equation, that is a pair (X, r), 
where X is a nonempty set and r : X ×X −→ X ×X is a bijective map such that the braid relation
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r1 ◦ r2 ◦ r1 = r2 ◦ r1 ◦ r2,

holds in X3, where r1 = r × idX : X3 −→ X3 and r2 = idX × r : X3 −→ X3.
A solution (X, r) is involutive if r2 = idX2 . We shall write

r(a, b) = (ab, ab) for a, b ∈ X.

Consider the maps Lx, Rx : X → X defined by

Lx(y) = xy and Rx(y) = yx,

for all x, y ∈ X. A solution (X, r) is non-degenerate if the maps Lx and Rx are bijective for all x ∈ X.

Convention. In this paper “a solution” means “an involutive non-degenerate set-theoretic solution of the 
Yang–Baxter equation”.

Recall that a left brace is a set B joint with two binary operations, a sum + and a multiplication ·, such 
that (B, +) is an abelian group, (B, ·) is a group and

a · (b + c) + a = a · b + a · c, (1.1)

for all a, b, c ∈ B. A right brace is defined similarly, but replacing the equality (1.1) by (b +c) ·a +a = b ·a +c ·a. 
If (B, +, ·) is both a left and a right brace (for the same operations), then it is called a two-sided brace.

It is known that if B is a left brace, and 0 and 1, respectively, denote the neutral elements with respect 
to the two operations “+” and “·” in B, then 0 = 1.

In any left brace B one defines the operation ∗ by the rule:

a ∗ b = a · b− a− b, a, b ∈ B. (1.2)

Remark 1.1. It is easy to check that ∗ is left distributive with respect to the sum +. Moreover, (B, +, ·) is 
a two-sided brace if and only if

(a + b) ∗ c = a ∗ c + b ∗ c, ∀a, b, c ∈ B. (1.3)

In general, the operation ∗ is not right distributive, nor associative, but it satisfies the following condition

(a ∗ b + a + b) ∗ c = a ∗ (b ∗ c) + a ∗ c + b ∗ c, ∀a, b, c ∈ B, (1.4)

see the original definition of right brace of Rump [10, Definition 2]. Moreover, (B, +, ·) is a two-sided brace 
if and only if (B, +, ∗) is a Jacobson radical ring, [10].

Every left brace B has a canonically associated solution of the YBE, denoted by (B, rB), where

rB : B ×B −→ B ×B

(a, b) �→ (ab, ab)
,

with ab := ab − a and ab := (ab − a)−1ab, for all a, b ∈ B. Moreover, the map

L : (B, ·) −→ Aut(B,+)
a �→ La : B → B

b �→ ab

is a homomorphism of groups (see [2]).
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