ARTICLE IN PRESS

Journal of Pure and Applied Algebra ••• (••••) •••-•••

ELSEVIER

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

JPAA:5843

www.elsevier.com/locate/jpaa

Braces and symmetric groups with special conditions

Ferran Cedó $^{\rm a,1},$ Tatiana Gateva-Ivanova $^{\rm b,*,2},$ Agata Smoktunowicz $^{\rm c,3}$

^a Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain ^b American Universita in Balagnia, 2000 Blaggenerad, and Estitute of Mathematican de La f

 ^b American University in Bulgaria, 2700 Blagoevgrad, and Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
 ^c School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, EH9 3JZ, Edinburgh, United Kingdom

ARTICLE INFO

Article history: Received 14 April 2017 Received in revised form 6 December 2017 Available online xxxx Communicated by A. Solotar

MSC:16T25; 16W22; 16N20; 16N40; 20F16; 81R50

ABSTRACT

We study left braces satisfying special conditions, or identities. We are particularly interested in the impact of conditions like **Raut** and **lri** on the properties of the left brace and its associated solution of the Yang–Baxter equation (YBE). We show that the solution (G, r_G) of the YBE associated to the structure group G = G(X, r) (with the natural structure of a left brace) of a nontrivial solution (X, r) of the YBE has multipermutation level 2 if and only if G satisfies **lri**. It is known that every (left) brace with **lri** satisfies condition **Raut**. We prove that for a graded Jacobson radical ring with no elements of additive order two the conditions **lri** and **Raut** are equivalent. We construct a finite two-sided brace with condition **Raut** which does not satisfy **lri**. We show that a finitely generated two-sided brace which satisfies **lri** has a finite multipermutation level which is bounded by the number of its generators. © 2018 Elsevier B.V. All rights reserved.

1. Introduction

Braces where introduced by Rump [10] as a generalization of Jacobson radical rings to study involutive non-degenerate set-theoretic solutions of the Yang–Baxter equation, an important equation in Mathematical Physics that lies in the foundation of quantum groups [8]. A close relation between braces and symmetric groups (involutive braided groups, [13]) was shown by the second author in [6].

Drinfeld [3] suggested to study set-theoretic solutions of the Yang–Baxter equation, that is a pair (X, r), where X is a nonempty set and $r: X \times X \longrightarrow X \times X$ is a bijective map such that the braid relation

 2 The second author was partially supported by Grant I 02/18 of the Bulgarian National Science Fund, by ICTP, Trieste, and by Max-Planck Institute for Mathematics, Bonn.

https://doi.org/10.1016/j.jpaa.2018.02.012 0022-4049/© 2018 Elsevier B.V. All rights reserved.

Please cite this article in press as: F. Cedó et al., Braces and symmetric groups with special conditions, J. Pure Appl. Algebra (2018), https://doi.org/10.1016/j.jpaa.2018.02.012

^{*} Corresponding author.

E-mail addresses: cedo@mat.uab.cat (F. Cedó), Tatyana@aubg.edu (T. Gateva-Ivanova), A.Smoktunowicz@ed.ac.uk (A. Smoktunowicz).

¹ The first author was partially supported by the grants MINECO–FEDER MTM2014-53644-P and MTM2017-83487-P (Spain).

³ The third author was supported by ERC Advanced grant 320974.

$\mathbf{2}$

ARTICLE IN PRESS

F. Cedó et al. / Journal of Pure and Applied Algebra ••• (••••) •••-•••

$$r_1 \circ r_2 \circ r_1 = r_2 \circ r_1 \circ r_2,$$

holds in X^3 , where $r_1 = r \times \operatorname{id}_X \colon X^3 \longrightarrow X^3$ and $r_2 = \operatorname{id}_X \times r \colon X^3 \longrightarrow X^3$.

A solution (X, r) is involutive if $r^2 = id_{X^2}$. We shall write

$$r(a,b) = (^ab, a^b) \text{ for } a, b \in X.$$

Consider the maps $\mathcal{L}_x, \mathcal{R}_x \colon X \to X$ defined by

$$\mathcal{L}_x(y) = {}^x y \text{ and } \mathcal{R}_x(y) = y^x,$$

for all $x, y \in X$. A solution (X, r) is *non-degenerate* if the maps \mathcal{L}_x and \mathcal{R}_x are bijective for all $x \in X$.

Convention. In this paper "*a solution*" means "an involutive non-degenerate set-theoretic solution of the Yang–Baxter equation".

Recall that a left brace is a set B joint with two binary operations, a sum + and a multiplication \cdot , such that (B, +) is an abelian group, (B, \cdot) is a group and

$$a \cdot (b+c) + a = a \cdot b + a \cdot c, \tag{1.1}$$

for all $a, b, c \in B$. A right brace is defined similarly, but replacing the equality (1.1) by $(b+c) \cdot a+a = b \cdot a+c \cdot a$. If $(B, +, \cdot)$ is both a left and a right brace (for the same operations), then it is called *a two-sided brace*.

It is known that if B is a left brace, and 0 and 1, respectively, denote the neutral elements with respect to the two operations "+" and " \cdot " in B, then 0 = 1.

In any left brace B one defines the operation \ast by the rule:

$$a * b = a \cdot b - a - b, \ a, b \in B.$$

$$(1.2)$$

Remark 1.1. It is easy to check that * is left distributive with respect to the sum +. Moreover, $(B, +, \cdot)$ is a two-sided brace if and only if

$$(a+b)*c = a*c+b*c, \quad \forall a, b, c \in B.$$

$$(1.3)$$

In general, the operation * is not right distributive, nor associative, but it satisfies the following condition

$$(a * b + a + b) * c = a * (b * c) + a * c + b * c, \quad \forall a, b, c \in B,$$
(1.4)

see the original definition of right brace of Rump [10, Definition 2]. Moreover, $(B, +, \cdot)$ is a two-sided brace if and only if (B, +, *) is a Jacobson radical ring, [10].

Every left brace B has a canonically associated solution of the YBE, denoted by (B, r_B) , where

$$\begin{array}{rccc} r_B \colon & B \times B & \longrightarrow & B \times B \\ & (a,b) & \mapsto & (^ab,a^b) \end{array}$$

with ab := ab - a and $a^b := (ab - a)^{-1}ab$, for all $a, b \in B$. Moreover, the map

$$\begin{array}{cccc} \mathcal{L} \colon & (B, \cdot) & \longrightarrow & \operatorname{Aut}(B, +) \\ & a & \mapsto & \mathcal{L}_a \colon B \to B \\ & & b \mapsto {}^a b \end{array}$$

is a homomorphism of groups (see [2]).

 $Please \ cite \ this \ article \ in \ press \ as: \ F. \ Cedo \ et \ al., \ Braces \ and \ symmetric \ groups \ with \ special \ conditions, \ J. \ Pure \ Appl. \ Algebra \ (2018), \ https://doi.org/10.1016/j.jpaa.2018.02.012$

Download English Version:

https://daneshyari.com/en/article/8897278

Download Persian Version:

https://daneshyari.com/article/8897278

Daneshyari.com