Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

We describe the structure of finite dimensional selfinjective algebras over an arbi-

trary field without short cycles of indecomposable modules.

Selfinjective algebras without short cycles of indecomposable modules

Alicja Jaworska-Pastuszak*, Andrzej Skowroński

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

ABSTRACT

ARTICLE INFO

Article history: Received 26 August 2017 Available online 3 January 2018 Communicated by S. Koenig

Dedicated to Zygmunt Pogorzały on the occasion of his 60th birthday

MSC: 16D50; 16G10; 16G60; 16G70

0. Introduction and the main result

Throughout the paper, by an algebra we mean a basic indecomposable finite dimensional associative K-algebra with identity over a field K. For an algebra A, we denote by mod A the category of finitedimensional right A-modules, by ind A the full subcategory of mod A formed by the indecomposable modules, by Γ_A the Auslander–Reiten quiver of A, and by τ_A and τ_A^{-1} the Auslander–Reiten translations DTr and TrD, respectively. We do not distinguish between a module in ind A and the vertex of Γ_A corresponding to it. An algebra A is of finite representation type if the category ind A admits only a finite number of pairwise nonisomorphic modules. It is well known that a hereditary algebra A is of finite representation type if and only if A is of Dynkin type, that is, the valued quiver Q_A of A is a Dynkin quiver of type \mathbb{A}_n $(n \ge 1)$, \mathbb{B}_n $(n \ge 2)$, \mathbb{C}_n $(n \ge 3)$, \mathbb{D}_n $(n \ge 4)$, \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 , \mathbb{F}_4 and \mathbb{G}_2 (see [7], [8], [9]). A distinguished class of algebras of finite representation type is formed by the tilted algebras of Dynkin type, that is, the algebras of the form $\operatorname{End}_H(T)$ for a hereditary algebra H of Dynkin type and a (multiplicity-free) tilting module Tin mod H. An algebra A is called selfinjective if A_A is an injective module, or equivalently, the projective modules in mod A are injective. For a selfinjective algebra A, we denote by Γ_A^s the stable Auslander–Reiten quiver of A, obtained from Γ_A by removing the projective modules and the arrows attached to them.

* Corresponding author.

© 2018 Elsevier B.V. All rights reserved.

E-mail addresses: jaworska@mat.uni.torun.pl (A. Jaworska-Pastuszak), skowron@mat.uni.torun.pl (A. Skowroński).

We are concerned with the problem of describing the isomorphism classes of selfinjective algebras of finite representation type. For K algebraically closed, the problem was solved in the 1980's by C. Riedtmann (see [5], [17], [18], [19]) via the combinatorial classification of the Auslander–Reiten quivers of selfinjective algebras of finite representation type. Equivalently, Riedtmann's classification can be presented as follows (see [20, Section 3]): a nonsimple selfinjective algebra A over an algebraically closed field K is of finite representation type if and only if A is a socle (geometric) deformation of an orbit algebra \widehat{B}/G , where \widehat{B} is the repetitive category of a tilted algebra B of Dynkin type \mathbb{A}_n $(n \ge 1)$, \mathbb{D}_n $(n \ge 4)$, \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 , and G is an admissible infinite cyclic group of automorphisms of \hat{B} . For an arbitrary field K, the problem seems to be difficult (see [3], [4], [12], [25] for some results in this direction and [26, Section 12] for related open problems). An important known result towards solution of this general problem is the description of the stable Auslander–Reiten quiver Γ_A^s of a selfinjective algebra A of finite representation type established by C. Riedtmann [17] and G. Todorov [30] (see also [27, Section IV.15]): Γ_A^s is isomorphic to the orbit quiver $\mathbb{Z}\Delta/G$, where Δ is a Dynkin quiver of type \mathbb{A}_n $(n \ge 1)$, \mathbb{B}_n $(n \ge 2)$, \mathbb{C}_n $(n \ge 3)$, \mathbb{D}_n $(n \ge 4)$, \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 , \mathbb{F}_4 or \mathbb{G}_2 , and G is an admissible infinite cyclic group of automorphisms of the translation quiver $\mathbb{Z}\Delta$. Therefore, we may associate to a selfinjective algebra A of finite representation type a Dynkin graph $\Delta(A)$. called the Dynkin type of A, such that $\Gamma_A^s = \mathbb{Z}\Delta/G$ for a quiver Δ having $\Delta(A)$ as underlying graph. We also mention that, for a tilted algebra B of Dynkin type Δ , the orbit algebras \hat{B}/G are selfinjective algebras of finite representation type whose Dynkin type is the underlying graph of Δ .

Following [16], a short cycle in the module category mod A of an algebra A is a sequence

$$X \xrightarrow{f} Y \xrightarrow{g} X$$

of two nonzero nonisomorphisms between modules X and Y in ind A. It has been proved in [16, Corollary 2.2] that if M is a module in ind A which does not lie on a short cycle then M is uniquely determined (up to isomorphism) by its image [M] in the Grothendieck group $K_0(A)$. Moreover, by a result of Happel and Liu [11, Theorem] every algebra A having no short cycles in mod A is of finite representation type.

The following theorem is the main result of the paper.

Theorem. Let A be a selfinjective algebra over a field K. The following statements are equivalent.

- (i) mod A has no short cycles.
- (ii) A is isomorphic to an orbit algebra $\widehat{B}/(\varphi \nu_{\widehat{B}}^2)$, where B is a tilted algebra of Dynkin type over K, $\nu_{\widehat{B}}$ is the Nakayama automorphism of \widehat{B} , and φ is a strictly positive automorphism of \widehat{B} .

The paper is organized as follows. In Section 1 we introduce the orbit algebras of repetitive categories. Section 2 is devoted to presenting basic results from the theory of selfinjective algebras with deforming ideals, playing the fundamental role in the proof of the main theorem. In Section 3 we discuss properties of stable slices of Auslander–Reiten quivers of selfinjective algebras of finite type, essential for further considerations. In Section 4 we describe the selfinjective Nakayama algebras without short cycles of indecomposable modules. In Section 5 we prove the Theorem for the selfinjective algebras of Dynkin type. In the final Section 6 we complete the proof of the Theorem for arbitrary selfinjective algebras.

For basic background on the representation theory applied in this paper we refer to [1], [2], [27] and [28].

1. Orbit algebras of repetitive categories

Let B be an algebra and $1_B = e_1 + \cdots + e_n$ a decomposition of the identity of B into a sum of pairwise orthogonal primitive idempotents. We associate to B a selfinjective locally bounded K-category \hat{B} , called Download English Version:

https://daneshyari.com/en/article/8897323

Download Persian Version:

https://daneshyari.com/article/8897323

Daneshyari.com