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Matrices A and B in Mn(C) are said to be mutually orthogonal if AB∗ +BA∗ = 0, 
where ∗ denotes the conjugate transpose. We study cardinalities of certain R-linearly 
independent families of matrices arising from matrix embeddings of a division alge-
bra of index m with center a number field Z, satisfying the property that matrices 
from different families are mutually orthogonal. The question is of importance in the 
context of coding for certain wireless channels, where the cardinalities of such sets 
is connected to the maximum code rate consistent with low decoding complexity. It 
follows from our results that the maximum code rate for the codes we consider is 
severely limited.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with a question that arises from certain coding and decoding issues in wireless com-
munication. Let D be a division algebra of index m, and center a number field Z. Suppose that we have 
an embedding φ : D → Mn(C) for some n. Thus, φ is a (necessarily injective) ring homomorphism, which 
by definition takes 1D to the identity matrix. We will work exclusively with the embedded forms φ(D) and 
φ(Z), and by abuse of notation, will continue to write D and Z respectively for φ(D) and φ(Z). We will 
call two matrices A and B in Mn(C) mutually orthogonal if AB∗ +BA∗ = 0, where ∗ denotes the conjugate 
transpose. Suppose Γ1, Γ2, Γ3, and Γ4 are four (nonempty) families of matrices in D such that any two 
matrices from distinct families are mutually orthogonal and such that the matrices in Γ1 ∪Γ2 ∪Γ3 ∪Γ4 are 
R-linearly independent. Assume that |Γ1| = |Γ2| = |Γ3| = |Γ4| = k. The question we study is the following: 
What is the maximum value of k? Under the assumption that Z = Z∗, which arises quite naturally in the 
application to wireless communication, we show that this maximum is md/2, where d is the degree of the 
minimal polynomial of α as a matrix in Mn(C), α a generator of Z over Q. Here, m is necessarily even, and 
we identify Q with its image φ : q �→ diag(q, . . . , q) in Mn(C). We give examples to show that this maximum 
is actually attained.
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Our main theorem is the following:

Theorem 1. With notation and assumptions as above:

(1) The index m of D is even.
(2) We have k ≤ mt

2 , where t is the maximum number of R-linearly independent Hermitian matrices in Z. 
Further, t ≤ d, where d is the degree of the minimal polynomial (as a matrix in Mn(C)) of any α ∈ Z

such that Z = Q(α). Thus, k ≤ md
2 .

(3) md ≤ n, so k ≤ n
2 .

We begin our considerations in the next section, but we first describe briefly how this question arises. In 
the field of multiple-antenna communication, division algebras embedded in Mn(C) form natural candidates 
for constructing space–time block codes, which for our purpose are matrices X(s) arising from the embedded 
division algebra, whose entries depend linearly on a 2l-tuple s = (s1, . . . , sl, s∗1, . . . , s

∗
l ), l ≤ n2. Here, the si

take values in a finite subset S of the nonzero complex numbers. The l-tuple (s1, . . . , sl) carries the message 
to be transmitted, and the matrix size n signifies both the number of antennas used as also the number 
of uses of the transmission channel in one block of transmission. (See [8], [9] for instance. Note that these 
references mainly focus on the situation where X(s) depends only on s1, . . . , sl, but we can just as easily 
allow the more general case where X(s) also depends on the complex conjugates s∗i .) Writing each si as 
a2i−1 + βa2i, where a2i−1 and a2i are real and β is non-real, the code matrices can be written in the form

X = X(a1, . . . , a2l) =
2l∑
i=1

aiAi, (1)

where the Ai are fixed n ×n complex matrices. The message is now carried by the real 2l-tuple (a1, a2, . . . ), 
where the ai come from the set R(S) defined as {x ∈ C | x + βy ∈ S, for some y ∈ C} unioned with 
{y ∈ C | x +βy ∈ S, for some x ∈ C}. Note that the Ai must be R-linearly independent, else, we could write 
some Ai as an R-linear combination of the remaining Aj in the right side of Equation (1), and as a result, we 
would effectively be transmitting fewer than 2l real symbols and hence less information in each matrix X.

Typically, the division algebra D from which the matrices X(s) arise is taken to be an Z-central division 
algebra, where Z is one of Q, Q(ı), or Q(ω), where ω is a primitive 3rd root of unity, and S is taken to 
be a subset of the nonzero elements of Z. When Z = Q(ı), β above is taken to be ı, and when Z = Q(ω), 
β above is taken to be ω. In such situations, and under the assumption that X(s) ∈ D for all s ∈ Z, as is 
the situation in practice, it is easy to see that the Ai themselves are also in D. (Of course, when Z = Q, 
there are no imaginary parts to the si, instead, for uniformity of notation, we will tacitly assume that in 
this case, s is really a 2l-tuple (a1, . . . , a2l), with 2l ≤ 2n2.)

When some standard lattice-based decoding procedures are employed, the decoding process has worst-case 
decoding complexity of the order O(|R(S|)2l), which, especially when the code is “full-rate” (i.e., l = n2), is 
prohibitively high. It is of interest to reduce the exponent of |R(S)| in the complexity, by enabling the ai to 
be decoded in parallel groups. If this can be accomplished, and if say k is the maximum size of the groups, 
then the decoding complexity drops to |R(S|)k. Suppose that the symbols a1, . . . , a2l can be decoded in 
parallel in groups Γ1, . . . , Γg, with Γi (after reindexing a1, . . . , a2l) containing the symbols ai,1, ai,2, . . . . We 
may rewrite Equation (1) as

X =
g∑

i=1

∑
u

ai,uAi,u (2)

where the Ai are correspondingly partitioned and reindexed. An analysis of the decoding process shows that 
decoding can occur in such parallel groups if and only if each of the corresponding matrices Ai,u, u = 1, 2, . . . , 
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