ARTICLE IN PRESS

Journal of Pure and Applied Algebra ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Derived categories of graded gentle one-cycle algebras

Martin Kalck^{a,1}, Dong Yang^{b,*,2}

 ^a The Maxwell Institute, School of Mathematics, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
^b Department of Mathematics, Nanjing University, Nanjing 210093, PR China

ARTICLE INFO

Article history: Received 6 December 2016 Received in revised form 16 October 2017 Available online xxxx Communicated by S. Iyengar

MSC: 16E35; 16E45; 18E30

ABSTRACT

Let A be a graded algebra. It is shown that the derived category of dg modules over A (viewed as a dg algebra with trivial differential) is a triangulated hull of a certain orbit category of the derived category of graded A-modules. This is applied to study derived categories of graded gentle one-cycle algebras.

@ 2017 Elsevier B.V. All rights reserved.

1. Introduction

Discrete triangulated categories are, roughly speaking, those Krull–Schmidt triangulated categories which do not admit 'continuous' families of isomorphism classes of indecomposable objects (see [36,12] for various notions of discreteness). A special class of such categories called locally finite triangulated categories (*e.g.* those with finitely many isomorphism classes of indecomposable objects) were intensively studied, in particular, their Auslander–Reiten quivers are classified, see [37,1]. For a finite-dimensional algebra (over an algebraically closed field), Vossieck's theorem [36] states that its derived category is discrete if and only if it is derived equivalent to a hereditary algebra of finite representation type (namely, the path algebra of a Dynkin quiver) or it is a gentle one-cycle algebra which does not satisfy the *clock condition* (see Section 7). The Auslander–Reiten quiver was determined in the former case by Happel in [18] and in the latter case by Bobiński–Geiss–Skowroński in [7]. See [8,4,10,11,30] for further study on discrete derived categories.

Recently, certain discrete triangulated categories of geometrical origin have been studied, *e.g.* the triangulated category generated by a d-spherical object [24] and the relative singularity category of the Auslander resolution of the nodal curve singularity [13]. They turn out to be derived categories of dg modules over

* Corresponding author.

https://doi.org/10.1016/j.jpaa.2017.11.011 0022-4049/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: M. Kalck, D. Yang, Derived categories of graded gentle one-cycle algebras, J. Pure Appl. Algebra (2017), https://doi.org/10.1016/j.jpaa.2017.11.011

E-mail addresses: m.kalck@ed.ac.uk (M. Kalck), yangdong@nju.edu.cn (D. Yang).

¹ M.K. was supported by DFG grant Bu–1866/2–1.

 $^{^2}$ D.Y. was supported by Max-Planck-Institute for Mathematics in Bonn, the DFG program SPP 1388 (YA297/1-1 and KO1281/9-1), the National Science Foundation in China No. 11401297 and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

$\mathbf{2}$

ARTICLE IN PRESS

M. Kalck, D. Yang / Journal of Pure and Applied Algebra ••• (••••) •••-•••

certain graded gentle one-cycle algebras, more precisely, $k[x]/x^2$ with $\deg(x) = d$ and the path algebra of the graded quiver $1 \stackrel{\alpha}{\underset{\beta}{\longrightarrow}} 2$ with both arrows in degree -1, respectively. Moreover, derived categories of graded hereditary algebras of type $\tilde{A_n}$ are triangle equivalent to partially wrapped Fukaya categories of graded annuli, see [17, Sections 1.2 and 6.3] and [26, Section 2.1]. Our Theorem 1.2 below gives a representation theoretic description of these triangulated Fukaya categories and gives a partial answer to the following question.

Question. When is the derived category of dg modules over a graded gentle one-cycle algebra (viewed as a dg algebra with trivial differential) discrete and what does the Gabriel/Auslander–Reiten quiver look like?

In this paper we are not able to define derived discreteness for graded algebras, but with Theorem 1.2 we believe that the graded algebras $\Gamma(p,q,r)$ $(r \in \mathbb{Z} \setminus \{0\})$ and $\Gamma'(q,r)$ $(r \in \mathbb{Z})$ in Theorem 1.1 are derived discrete for a reasonable definition of derived discreteness.

Theorem 1.1. Let A be a graded gentle one-cycle algebra.

(a) If A has finite global dimension, then there is a triple (p,q,r) of integers with $p,q \in \mathbb{N}^3$ and $r \in \mathbb{Z}$ such that A is derived equivalent to the path algebra $\Gamma(p,q,r)$ of the graded quiver

where $\deg(\alpha_i) = \delta_{i,p+q}r$.

(b) If A has infinite global dimension, then there are integers $q \in \mathbb{N}$ and $r \in \mathbb{Z}$ such that A is derived equivalent to the quotient algebra $\Gamma'(q,r)$ of the path algebra of the graded quiver

modulo all paths of length two, where $\deg(\alpha_i) = \delta_{i,q}(q-r)$.

For a dg algebra A, let $\mathcal{D}_{fd}(A)$ denote the full subcategory of the derived category of A consisting of those dg A-modules with finite-dimensional total cohomology.

Theorem 1.2. Let $p, q \in \mathbb{N}$ and $r \in \mathbb{Z} \setminus \{0\}$.

(a) The Auslander-Reiten quiver of $\mathcal{D}_{fd}(\Gamma(p,q,r))$ has 3|r| connected components: \mathcal{X}_i^1 of type $\mathbb{Z}A_{\infty}$, \mathcal{X}_i^2 of type $\mathbb{Z}A_{\infty}$ and \mathcal{P}_i of type $\mathbb{Z}A_{\infty}^{\infty}$, where $0 \leq i \leq |r|-1$. The suspension functor defines cyclic permutations of order |r| on the sets $\{\mathcal{X}_i^1\}$, $\{\mathcal{X}_i^2\}$ and $\{\mathcal{P}_i\}$, respectively. For $X \in \mathcal{X}_i^1$ we have $\tau^p X = \Sigma^r X$ and for

 $^{^3~}$ N is the set of positive integers.

Please cite this article in press as: M. Kalck, D. Yang, Derived categories of graded gentle one-cycle algebras, J. Pure Appl. Algebra (2017), https://doi.org/10.1016/j.jpaa.2017.11.011

Download English Version:

https://daneshyari.com/en/article/8897374

Download Persian Version:

https://daneshyari.com/article/8897374

Daneshyari.com