Bordered surfaces in the 3 -sphere with maximum symmetry

Chao Wang ${ }^{\text {a }}$, Shicheng Wang ${ }^{\text {b }}$, Yimu Zhang ${ }^{\text {c }}$, Bruno Zimmermann ${ }^{\text {d,* }}$
${ }^{\text {a }}$ School of Mathematical Sciences, University of Science and Technology of China, 230026 Hefei, China
b School of Mathematical Sciences, 100871 Beijing, China
${ }^{\text {c }}$ Mathematics School, Jilin University, 130012 Changchun, China
${ }^{\text {d }}$ Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, 34127 Trieste, Italy

A R T I C L E I N F O

Article history:

Received 3 July 2017
Received in revised form 13
September 2017
Available online xxxx
Communicated by C.A. Weibel

Abstract

We consider orientation-preserving actions of finite groups G on pairs $\left(S^{3}, \Sigma\right)$, where Σ denotes a compact connected surface embedded in S^{3}. In a previous paper, we considered the case of closed, necessarily orientable surfaces, determined for each genus $g>1$ the maximum order of such a G for all embeddings of a surface of genus g, and classified the corresponding embeddings. In the present paper we obtain analogous results for the case of bordered surfaces Σ (i.e. with non-empty boundary, orientable or not). Now the genus g gets replaced by the algebraic genus α of Σ (the rank of its free fundamental group); for each $\alpha>1$ we determine the maximum order m_{α} of an action of G, classify the topological types of the corresponding surfaces (topological genus, number of boundary components, orientability) and their embeddings into S^{3}. For example, the maximal possibility $12(\alpha-1)$ is obtained for the finitely many values $\alpha=2,3,4,5,9,11,25,97,121$ and 241.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We study smooth, faithful actions of finite groups G on pairs $\left(S^{3}, \Sigma\right)$ where Σ denotes a compact, connected, bordered surface with an embedding $e: \Sigma \rightarrow S^{3}$ (so G is a finite group of diffeomorphisms of a pair $\left(S^{3}, \Sigma\right)$). We also say that such a G-action on Σ is extendable (w.r.t. e).

Let $\Sigma_{g, b}$ denote the orientable compact surface of (topological) genus g with b boundary components, writing also Σ_{g} instead of $\Sigma_{g, 0}$; for $g>0$, let $\Sigma_{g, b}^{-}$denote the non-orientable compact surface of genus g with b boundary components. $\Sigma_{g, b}^{-}$is obtained from the connected sum of g real projective planes by creating b boundary components (by deleting the interiors of b disjoint embedded disks), and it is well-known that each compact surface is either $\Sigma_{g, b}$ or $\Sigma_{g, b}^{-}$.

[^0]https://doi.org/10.1016/j.jpaa.2017.10.002
0022-4049/© 2017 Elsevier B.V. All rights reserved.

For $b>0, \Sigma_{g, b}$ and $\Sigma_{g, b}^{-}$are bordered surfaces, and we use $\alpha(\Sigma)$ to denote their algebraic genus equal to the rank of the free fundamental group $\pi_{1}(\Sigma)$; this is also the genus of a regular neighborhood of Σ in S^{3} which is a 3 -dimensional handlebody. We have $\alpha\left(\Sigma_{g, b}\right)=2 g-1+b$ and $\alpha\left(\Sigma_{g, b}^{-}\right)=g-1+b$. We will always assume that $\alpha>1$ in the present paper.

We will consider only orientation-preserving finite group actions on S^{3}; then, referring to the recent geometrization of finite group actions on S^{3} (see [2] for the case of non-free actions and [10] for the general case), we can restrict to orthogonal actions of finite groups on S^{3}, i.e. to finite subgroups G of the orthogonal group $S O(4)$.

Let m_{α} denote the maximum order of such a group G acting on a pair $\left(S^{3}, \Sigma\right)$, for all embeddings of bordered surfaces Σ of a fixed algebraic genus α into S^{3}. In the present paper we will determine m_{α} and classify all surfaces Σ which realize the maximum order m_{α}.

A similar question for the pair $\left(S^{3}, \Sigma_{g}\right)$, where Σ_{g} is the closed orientable surface of genus g, was studied in [12]. The corresponding maximum order $O E_{g}$ of finite groups acting on $\left(S^{3}, \Sigma_{g}\right)$ for all possible embeddings $\Sigma_{g} \subset S^{3}$ was obtained in that paper.

Let V_{g} denote the handlebody of genus g. Each bordered surface $\Sigma \subset S^{3}$ of algebraic genus α has a regular neighborhood which is homeomorphic to V_{α}. We note that, similar as for handlebodies, the maximal possibilities for the orders of groups of homeomorphisms of compact bordered surfaces of algebraic genus α are $12(\alpha-1), 8(\alpha-1), 20(\alpha-1) / 3,6(\alpha-1), \ldots$ (see section 3 of [9]), and these are exactly the values occurring in the next theorem. A classification of all finite group actions on compact bordered surfaces up to algebraic genus 101 is given in [1], and the lists in that paper may be compared with the list in the next theorem. Concerning other papers considering symmetries of surfaces immersed in 3 -space, see [3], [4] and [8].

Our main result is:
Theorem 1.1. For each $\alpha>1, m_{\alpha}$ and the surfaces realizing m_{α} are listed below.

α	m_{α}	Σ
2	$12(\alpha-1)=12$	$\Sigma_{0,3}, \Sigma_{1,1}$
3	$12(\alpha-1)=24$	$\Sigma_{0,4}, \Sigma_{1,3}^{-}$
4	$12(\alpha-1)=36$	$\Sigma_{1,3}$
5	$12(\alpha-1)=48$	$\Sigma_{0,6}, \Sigma_{1,4}$
9	$12(\alpha-1)=96$	$\Sigma_{2,6}, \Sigma_{3,4}$
11	$12(\alpha-1)=120$	$\Sigma_{0,12}, \Sigma_{6,6}^{-}$
25	$12(\alpha-1)=288$	$\Sigma_{7,12}, \Sigma_{10,6}$
97	$12(\alpha-1)=1152$	$\Sigma_{37,24}$
121	$12(\alpha-1)=1440$	$\Sigma_{43,36}, \Sigma_{55,12}$
241	$12(\alpha-1)=2880$	$\Sigma_{73,96}, \Sigma_{97,48}, \Sigma_{206,36}^{-}$
7	$8(\alpha-1)=48$	$\Sigma_{0,8}, \Sigma_{4,4}^{-}$
49	$8(\alpha-1)=384$	$\Sigma_{17,16}, \Sigma_{21,8}$
16	$\frac{20}{3}(\alpha-1)=100$	$\Sigma_{6,5}$
19	$\frac{20}{3}(\alpha-1)=120$	$\Sigma_{0,20}, \Sigma_{14,6}^{-}$
361	$\frac{20}{3}(\alpha-1)=2400$	$\Sigma_{131,100}, \Sigma_{151,60}, \Sigma_{171,20}$
21	$6(\alpha-1)=120$	$\Sigma_{5,12}$
481	$6(\alpha-1)=2880$	$\Sigma_{205,72}, \Sigma_{193,96}$
41	$\frac{24}{5}(\alpha-1)=192$	$\Sigma_{30,12}^{-}$
1681	$\frac{30}{7}(\alpha-1)=7200$	$\Sigma_{1562,120}^{-}$
841	$4(\sqrt{\alpha}+1)^{2}=3600$	
$k^{2}, k \neq 3,5,7,11,19,41$	$4(\sqrt{\alpha}+1)^{2}$	$\Sigma_{\frac{k(k-1)}{2}, k+1}$
29	$4(\alpha+1)=120$	$\Sigma_{0,30}, \Sigma_{9,12}, \Sigma_{14,2}$
the remaining numbers	$4(\alpha+1)$	$\Sigma_{0, \alpha+1}, \Sigma_{\frac{\alpha}{2}, 1}(\alpha$ even $), \Sigma_{\frac{\alpha-1}{2}, 2}(\alpha$ odd $)$

https://daneshyari.com/en/article/8897420

Download Persian Version:
https://daneshyari.com/article/8897420

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: chao_wang_1987@126.com (C. Wang), wangsc@math.pku.edu.cn (S. Wang), zym534685421@126.com (Y. Zhang), zimmer@units.it (B. Zimmermann).

