ARTICLE IN PRESS

Journal of Pure and Applied Algebra ••• (••••) •••-•••

ELSEVIER

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

JPAA:5768

www.elsevier.com/locate/jpaa

Bordered surfaces in the 3-sphere with maximum symmetry

Chao Wang^a, Shicheng Wang^b, Yimu Zhang^c, Bruno Zimmermann^{d,*}

^a School of Mathematical Sciences, University of Science and Technology of China, 230026 Hefei, China

^b School of Mathematical Sciences, 100871 Beijing, China

^c Mathematics School, Jilin University, 130012 Changchun, China

^d Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, 34127 Trieste, Italy

ARTICLE INFO

Article history: Received 3 July 2017 Received in revised form 13 September 2017 Available online xxxx Communicated by C.A. Weibel

ABSTRACT

We consider orientation-preserving actions of finite groups G on pairs (S^3, Σ) , where Σ denotes a compact connected surface embedded in S^3 . In a previous paper, we considered the case of closed, necessarily orientable surfaces, determined for each genus g > 1 the maximum order of such a G for all embeddings of a surface of genus g, and classified the corresponding embeddings.

In the present paper we obtain analogous results for the case of bordered surfaces Σ (i.e. with non-empty boundary, orientable or not). Now the genus g gets replaced by the algebraic genus α of Σ (the rank of its free fundamental group); for each $\alpha > 1$ we determine the maximum order m_{α} of an action of G, classify the topological types of the corresponding surfaces (topological genus, number of boundary components, orientability) and their embeddings into S^3 . For example, the maximal possibility $12(\alpha - 1)$ is obtained for the finitely many values $\alpha = 2, 3, 4, 5, 9, 11, 25, 97, 121$ and 241.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We study smooth, faithful actions of finite groups G on pairs (S^3, Σ) where Σ denotes a compact, connected, bordered surface with an embedding $e : \Sigma \to S^3$ (so G is a finite group of diffeomorphisms of a pair (S^3, Σ)). We also say that such a G-action on Σ is *extendable* (w.r.t. e).

Let $\Sigma_{g,b}$ denote the orientable compact surface of (topological) genus g with b boundary components, writing also Σ_g instead of $\Sigma_{g,0}$; for g > 0, let $\Sigma_{g,b}^-$ denote the non-orientable compact surface of genus g with b boundary components. $\Sigma_{g,b}^-$ is obtained from the connected sum of g real projective planes by creating b boundary components (by deleting the interiors of b disjoint embedded disks), and it is well-known that each compact surface is either $\Sigma_{g,b}$ or $\Sigma_{g,b}^-$.

 $\ast\,$ Corresponding author.

Please cite this article in press as: C. Wang et al., Bordered surfaces in the 3-sphere with maximum symmetry, J. Pure Appl. Algebra (2017), https://doi.org/10.1016/j.jpaa.2017.10.002

E-mail addresses: chao_wang_1987@126.com (C. Wang), wangsc@math.pku.edu.cn (S. Wang), zym534685421@126.com (Y. Zhang), zimmer@units.it (B. Zimmermann).

https://doi.org/10.1016/j.jpaa.2017.10.0020022-4049/ O 2017 Elsevier B.V. All rights reserved.

<u>ARTICLE IN PRESS</u>

For b > 0, $\Sigma_{g,b}$ and $\Sigma_{g,b}^-$ are bordered surfaces, and we use $\alpha(\Sigma)$ to denote their algebraic genus equal to the rank of the free fundamental group $\pi_1(\Sigma)$; this is also the genus of a regular neighborhood of Σ in S^3 which is a 3-dimensional handlebody. We have $\alpha(\Sigma_{g,b}) = 2g - 1 + b$ and $\alpha(\Sigma_{g,b}^-) = g - 1 + b$. We will always assume that $\alpha > 1$ in the present paper.

We will consider only orientation-preserving finite group actions on S^3 ; then, referring to the recent geometrization of finite group actions on S^3 (see [2] for the case of non-free actions and [10] for the general case), we can restrict to orthogonal actions of finite groups on S^3 , i.e. to finite subgroups G of the orthogonal group SO(4).

Let m_{α} denote the maximum order of such a group G acting on a pair (S^3, Σ) , for all embeddings of bordered surfaces Σ of a fixed algebraic genus α into S^3 . In the present paper we will determine m_{α} and classify all surfaces Σ which realize the maximum order m_{α} .

A similar question for the pair (S^3, Σ_g) , where Σ_g is the closed orientable surface of genus g, was studied in [12]. The corresponding maximum order OE_g of finite groups acting on (S^3, Σ_g) for all possible embeddings $\Sigma_g \subset S^3$ was obtained in that paper.

Let V_g denote the handlebody of genus g. Each bordered surface $\Sigma \subset S^3$ of algebraic genus α has a regular neighborhood which is homeomorphic to V_{α} . We note that, similar as for handlebodies, the maximal possibilities for the orders of groups of homeomorphisms of compact bordered surfaces of algebraic genus α are $12(\alpha - 1)$, $8(\alpha - 1)$, $20(\alpha - 1)/3$, $6(\alpha - 1)$, ... (see section 3 of [9]), and these are exactly the values occurring in the next theorem. A classification of all finite group actions on compact bordered surfaces up to algebraic genus 101 is given in [1], and the lists in that paper may be compared with the list in the next theorem. Concerning other papers considering symmetries of surfaces immersed in 3-space, see [3], [4] and [8].

Our main result is:

α	m_{lpha}	Σ
2	$12(\alpha - 1) = 12$	$\Sigma_{0,3}, \Sigma_{1,1}$
3	$12(\alpha - 1) = 24$	$\Sigma_{0,4}, \Sigma_{1,3}^{-}$
4	$12(\alpha - 1) = 36$	$\Sigma_{1,3}$
5	$12(\alpha - 1) = 48$	$\Sigma_{0,6}, \Sigma_{1,4}$
9	$12(\alpha - 1) = 96$	$\Sigma_{2,6}, \Sigma_{3,4}$
11	$12(\alpha - 1) = 120$	$\Sigma_{0,12}, \Sigma_{6,6}^-$
25	$12(\alpha - 1) = 288$	$\Sigma_{7,12}, \Sigma_{10,6}$
97	$12(\alpha - 1) = 1152$	$\Sigma_{37,24}$
121	$12(\alpha - 1) = 1440$	$\Sigma_{43,36}, \Sigma_{55,12}$
241	$12(\alpha - 1) = 2880$	$\Sigma_{73,96}, \Sigma_{97,48}, \Sigma_{206,36}^{-}$
7	$8(\alpha - 1) = 48$	$\Sigma_{0,8}, \Sigma_{4,4}^-$
49	$8(\alpha - 1) = 384$	$\Sigma_{17,16}, \ \Sigma_{21,8}$
16	$\frac{20}{3}(\alpha - 1) = 100$	$\Sigma_{6,5}$
19	$\frac{20}{3}(\alpha - 1) = 120$	$\Sigma_{0,20}, \Sigma_{14,6}^{-}$
361	-	$\Sigma_{131,100}, \Sigma_{151,60}, \Sigma_{171,20}$
21	$6(\alpha - 1) = 120$	$\Sigma_{5.12}$
481	$6(\alpha - 1) = 2880$	$\Sigma_{205,72}, \Sigma_{193,96}$
41	$\frac{24}{5}(\alpha - 1) = 192$	$\Sigma^{-}_{30,12}$
1681	$\frac{30}{7}(\alpha - 1) = 7200$	$\Sigma^{-}_{1562,120}$
841 $k^2, k \neq 3, 5, 7, 11, 19, 41$	$4(\sqrt{\alpha} + 1)^2 = 3600 4(\sqrt{\alpha} + 1)^2$	$\Sigma_{391,60}, \Sigma_{406,30}$ $\Sigma_{\frac{k(k-1)}{2},k+1}$
29 the remaining numbers	$4(\alpha + 1) = 120$ $4(\alpha + 1)$	$ \Sigma_{0,30}, \Sigma_{9,12}, \Sigma_{14,2} \\ \Sigma_{0,\alpha+1}, \Sigma_{\frac{\alpha}{2},1} \ (\alpha \text{ even}), \Sigma_{\frac{\alpha-1}{2},2} \ (\alpha \text{ odd}) $

Theorem 1.1. For each $\alpha > 1$, m_{α} and the surfaces realizing m_{α} are listed below.

Please cite this article in press as: C. Wang et al., Bordered surfaces in the 3-sphere with maximum symmetry, J. Pure Appl. Algebra (2017), https://doi.org/10.1016/j.jpaa.2017.10.002

Download English Version:

https://daneshyari.com/en/article/8897420

Download Persian Version:

https://daneshyari.com/article/8897420

Daneshyari.com