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Let D be a commutative domain with field of fractions K, let A be a torsion-free 
D-algebra, and let B be the extension of A to a K-algebra. The set of integer-valued 
polynomials on A is Int(A) = {f ∈ B[X] | f(A) ⊆ A}, and the intersection of Int(A)
with K[X] is IntK(A), which is a commutative subring of K[X]. The set Int(A) may 
or may not be a ring, but it always has the structure of a left IntK(A)-module.
A D-algebra A which is free as a D-module and of finite rank is called 
IntK -decomposable if a D-module basis for A is also an IntK(A)-module basis for 
Int(A); in other words, if Int(A) can be generated by IntK(A) and A. A classification 
of such algebras has been given when D is a Dedekind domain with finite residue 
rings. In the present article, we modify the definition of IntK -decomposable so 
that it can be applied to D-algebras that are not necessarily free by defining A
to be IntK -decomposable when Int(A) is isomorphic to IntK(A) ⊗D A. We then 
provide multiple characterizations of such algebras in the case where D is a discrete 
valuation ring or a Dedekind domain with finite residue rings. In particular, if D
is the ring of integers of a number field K, we show that an IntK -decomposable 
algebra A must be a maximal D-order in a separable K-algebra B, whose simple 
components have as center the same finite unramified Galois extension F of K and 
are unramified at each finite place of F . Finally, when both D and A are rings of 
integers in number fields, we prove that IntK -decomposable algebras correspond to 
unramified Galois extensions of K.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let D be a commutative integral domain with field of fractions K. The ring of integer-valued polynomials 
over D is defined to be Int(D) := {f ∈ K[X] | f(D) ⊆ D}. The ring Int(D), its elements, and its properties 
have been popular objects of study over the past several decades and continue to be so today. The book [4]
is the standard reference on the topic.
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Beginning around 2010, attention turned to polynomials that are evaluated on D-algebras rather than 
on D itself. This can be seen in the work of Evrard, Fares and Johnson [6,7], Frisch [8–11], Loper [15], 
Peruginelli [5,13,20–23,25], Werner [30,32,33], and Naghipour, Rismanchian, and Sedighi Hafshejani [17]. 
A good example of these new rings of integer-valued polynomials comes from considering the polynomials 
in K[X] that map each element of the matrix algebra Mn(D) back to Mn(D).

Example 1.1. Associate K with the scalar matrices in Mn(K). Then, for any matrix a ∈ Mn(D) and any 
polynomial f(X) =

∑t
i=0 qiX

i ∈ K[X], we can evaluate f at a to produce the matrix f(a) =
∑t

i=0 qia
i. 

If f(a) ∈ Mn(D) for each a ∈ Mn(D), then f is said to be integer-valued on Mn(D). The set of all such 
polynomials is denoted by

IntK(Mn(D)) := {f ∈ K[X] | f(Mn(D)) ⊆ Mn(D)},

and it is easy to verify that IntK(Mn(D)) is a subring of K[X].
We can form a larger collection of polynomials that are integer-valued on Mn(D) by considering polyno-

mials whose coefficients come from Mn(K) rather than from K. That is, we form the set

Int(Mn(D)) := {f ∈ Mn(K)[X] | f(Mn(D)) ⊆ Mn(D)}.

Since Mn(K) is noncommutative, we follow standard conventions regarding polynomials with non-
commuting coefficients, as in [14, §16]. In Mn(K)[X], we assume that the indeterminate X commutes 
with each element of Mn(K), and we define evaluation to occur when the indeterminate is to the right of 
any coefficients. So, given f(X) =

∑t
i=0 qiX

i ∈ Mn(K)[X], we consider f(X) to be equal to 
∑t

i=0 X
iqi

as an element of Mn(K)[X], but to evaluate f(X) at a matrix a ∈ Mn(D), we must first write f(X) in 
the form f(X) =

∑t
i=0 qiX

i, and then f(a) =
∑t

i=0 qia
i. A consequence of this is that evaluation is no 

longer a multiplicative homomorphism; that is, if f(X) = g(X)h(X) in Mn(K)[X], then it may not be 
true that f(a) equals g(a)h(a). Because of this difficulty, it is not clear whether Int(Mn(D)) is closed under 
multiplication. Despite the complications associated with evaluation of polynomials in this setting, one may 
prove that Int(Mn(D)) is a (noncommutative) subring of Mn(K)[X] [31, Thm. 1.2]. Thus, we are able to 
construct a noncommutative ring of integer-valued polynomials.

We can actually say more. In [8, Thm. 7.2], Sophie Frisch proved that Int(Mn(D)) is itself a matrix ring. 
Specifically, Int(Mn(D)) ∼= Mn(IntK(Mn(D))), where the isomorphism is given by associating a polynomial 
with matrix coefficients to a matrix with polynomial entries. (This isomorphism is the restriction of the 
classical isomorphism between the polynomial ring Mn(K)[X] and the matrix ring Mn(K[X]).) Because of 
Frisch’s theorem, many questions about Int(Mn(D)) can be reduced to questions about IntK(Mn(D)), and 
the latter ring—being commutative—is usually easier to work with.

Broadly speaking, the point of this paper is to study the relationship between a commutative ring of 
integer-valued polynomials such as IntK(Mn(D)) and its extension Int(Mn(D)). In particular, we wish to 
determine when and how Frisch’s theorem [8, Thm. 7.2] can be generalized to algebras other than matrix 
rings. While matrix rings will be prominent in our work, the majority of our theorems deal with general 
algebras. However, our basic definitions are inspired by the situation described in Example 1.1.

We begin by giving notation and conventions for working with polynomials over algebras. As before, let 
D be a commutative integral domain with field of fractions K. Let A be a torsion-free D-algebra and take 
B = K⊗DA to be the extension of A to a K-algebra. We associate K and A with their canonical images in B

via the maps k �→ k⊗ 1 and a �→ 1 ⊗ a. Much of our work will involve polynomials in B[X]. The algebra B

may be noncommutative, but we will assume that X commutes with all elements of B. Moreover, we define 
evaluation of polynomials in B[X] at elements of A just as we did in Example 1.1 where A = Mn(D) and 
B = Mn(K). Given f(X) =

∑t
i=0 ciX

i ∈ B[X] and b ∈ B, we define
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