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Let X be a quasi-compact, separated scheme over a field k and we can consider the 
categorical resolution of singularities of X. In this paper let k′/k be a field extension 
and we study the scalar extension of a categorical resolution of singularities of X and 
we show how it gives a categorical resolution of the base change scheme Xk′ . Our 
construction involves the scalar extension of derived categories of DG-modules over 
a DG algebra. As an application we use the technique of scalar extension developed 
in this paper to prove the non-existence of full exceptional collections of categorical 
resolutions for a projective curve of genus ≥1 over a non-algebraically closed field.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For a scheme X over a field k, the derived category D(X) of quasi-coherent OX -modules plays an 
important role in the study of the geometry of X. In particular, a categorical resolution of singularities of 
X is defined to be a smooth triangulated category T together with an adjoint pair π∗ : D(X) � T : π∗
which satisfies certain properties. See [7] or Definition 3.1 below for details.

On the other hand, base change techniques are also ubiquitous in algebraic geometry. In [13], a theory of 
scalar extensions of triangulated categories has been developed and applied to derived categories of varieties.

In this paper we define and study the scalar extension of categorical resolutions. The difficulty is to find 
the scalar extensions of the adjoint pair (π∗, π∗). To solve this problem we modify the definition of categorical 
resolution: inspired by [8], we define an algebraic categorical resolution of X to be a triple (A, B, T ) where 
A is a differential graded (DG) algebra such that D(X) � D(A), B is a smooth DG algebra and T is 
an A–B bimodule which satisfies certain properties. See Definition 3.4 below for more details. In some 
important cases, which include the cases we are most interested in, these two definitions are equivalent. For 
the comparison of different definitions of categorical resolution see Proposition 3.4 below.

The advantage of algebraic categorical resolution is that it is compatible with base field extensions. One 
of the main results in this paper is the following proposition.
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Proposition 1.1 (See Proposition 4.11 below). Let X be a projective variety over a field k. If (A, B, T ) is an 
algebraic categorical resolution of X, then (Ak′ , Bk′ , Tk′) is an algebraic categorical resolution of the base 
change variety Xk′ .

As an application we study the categorical resolution of projective curves X over a non-algebraically 
closed field k. Using the technique of scalar extension we obtain the following theorems which generalize 
the main results in [17].

Theorem 1.2 (See Theorem 5.4 below). Let X be a projective curve over a field k. Then X has a categorical 
resolution which admits a full exceptional collection if and only if the geometric genus of X is 0.

Theorem 1.3 (See Theorem 5.5 below). Let X be a projective curve with geometric genus ≥1 over a field 
k and (T , π∗, π∗) be a categorical resolution of X. Then T c cannot have a tilting object, moreover there 
cannot be a finite dimensional k-algebra Λ of finite global dimension such that

T c � Db(Λ-mod).

This paper is organized as follows: In Section 2 we quickly review triangulated categories, DG categories 
and DG algebras. In Section 3 we review and compare different definitions of categorical resolutions. In 
Section 4.1 we study the scalar extension of derived categories of DG algebras and in Section 4.2 we study 
the scalar extension of categorical resolutions. In Section 5 we use the technique of scalar extension to study 
categorical resolutions of projective curves over a non-algebraically closed field.
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2. Preliminaries

2.1. Review of some concepts on triangulated categories

Let T be a triangulated category. T is called cocomplete if it has arbitrary direct sums. An object E of a 
cocomplete triangulated category T is called compact if the functor HomT (E, −) preserves arbitrary direct 
sums. Let T c denote the full triangulated subcategory of T consisting of compact objects.

Let I be a set of objects of T . We say I generates T if for any object N of T , HomT (E, N [i]) = 0 for 
any E ∈ I and i ∈ Z implies N = 0. We say a cocomplete triangulated category T is compactly generated
if it is generated by a set of compact objects. An object E of T is called a generator of T if the set {E}
generates T .

We have the following well-known result.

Lemma 2.1. Let T be a cocomplete triangulated category. If a set of objects E ⊂ T c generates T , then T
coincides with the smallest strictly full triangulated subcategory of T which contains E and is closed under 
direct sums. Recall a subcategory is strictly full if it is full and closed under isomorphism.

Proof. See the proof of [12] Theorem 4.22. �
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