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Fernando Corrêa da Costa, 2367, Cuiabá, Brazil.
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Abstract. Let V be a variety of associative algebras with involution ∗ over a field F of characteristic zero.
Giambruno and Mishchenko proved in [6] that the ∗-codimension sequence of V is polynomially bounded if
and only if V does not contain the commutative algebra D = F ⊕F , endowed with the exchange involution,
and M , a suitable 4-dimensional subalgebra of the algebra of 4× 4 upper triangular matrices, endowed with
the reflection involution. As a consequence the algebras D and M generate the only varieties of almost

polynomial growth. In [20] the authors completely classify all subvarieties and all minimal subvarieties

of the varieties var∗(D) and var∗(M). In this paper we exhibit the decompositions of the ∗-cocharacters
of all minimal subvarieties of var∗(D) and var∗(M) and compute their ∗-colengths. Finally we relate the

polynomial growth of a variety to the ∗-colengths and classify the varieties such that their sequence of

∗-colengths is bounded by three.

1. Introduction

Let A be an associative algebra with involution (∗-algebra) over a field F of characteristic zero and
let c∗n(A), n = 1, 2, . . . , be its sequence of ∗-codimensions. In case A satisfies a nontrivial identity, it was
proved in [8] that c∗n(A) is exponentially bounded. In order to capture the exponential rate of growth of
the sequence of ∗-codimensions, recently, in [7] the authors proved that for any associative ∗-algebra A,
satisfying an ordinary identity,

exp∗(A) = lim
n→∞

n
√
c∗n(A)

exists and is an integer called the ∗-exponent of A.
Given a variety of ∗-algebras V, the growth of V is the growth of the sequence of ∗-codimensions of any

algebra A generating V, i.e., V = var∗(A). In this paper we are interested in varieties of polynomial growth,
i.e., varieties of ∗-algebras such that c∗n(V) = c∗n(A) is polynomially bounded.

In such a case, if A is an algebra with 1, in [19] it was proved that c∗n(A) = qnk+O(nk−1) is a polynomial

with rational coefficients whose leading term satisfies the inequalities 1
k! ≤ q ≤ ∑k

i=0 2
k−i (−1)i

i! .
In case of polynomial growth Giambruno and Mishchenko proved in [6] that a variety V has polynomial

growth if and only if V does not contain the commutative algebra D = F ⊕ F , endowed with the exchange
involution, and M , a suitable 4-dimensional subalgebra of the algebra of 4 × 4 upper triangular matrices,
endowed with the reflection involution. As a consequence the ∗-algebras D and M generate the only varieties
of almost polynomial growth, i.e, they grow exponentially but any proper subvariety is polynomially bounded.

In [20] the authors completely classify all subvarieties of the varieties var∗(D) and var∗(M). They
also classify all their minimal subvarieties of polynomial growth. We recall that V is a minimal variety of
polynomial growth nk if asymptotically c∗n(V) ≈ ank, for some a �= 0, and c∗n(U) ≈ bnt, with t < k, for any
proper subvariety U of V.
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