# ARTICLE IN PRESS

Journal of Pure and Applied Algebra ••• (••••) •••-•••

Contents lists available at ScienceDirect

## Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

## Local uniformization and arc spaces

Olivier Piltant<sup>a</sup>, Ana J. Reguera<sup>b,\*</sup>

 <sup>a</sup> LMV UMR 8100, Université de Versailles Saint-Quentin en Y., 45 av. des Etats-Unis, F-78035 Versailles Cedex, France
<sup>b</sup> Dpto. de Álgebra, Análisis Matemático, Geometría y Topología, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain

#### ARTICLE INFO

Article history: Received 20 January 2017 Received in revised form 1 July 2017 Available online xxxx Communicated by S. Iyengar

*MSC:* 13A18; 13H99; 14B05; 14E15; 14J17

#### ABSTRACT

Let X be a variety over a perfect field k and let  $X_{\infty}$  be its space of arcs. Given a closed subset Z of X, let  $X_{\infty}^Z$  denote the subscheme of  $X_{\infty}$  consisting of all arcs centered at some point of Z. We prove that Local Uniformization implies that  $X_{\infty}^Z$  has a finite number of irreducible components for each closed subset Z of X. In particular, Local Uniformization implies that  $X_{\infty}^{Sing X}$  has a finite number of irreducible components.

© 2017 Elsevier B.V. All rights reserved.

### 1. Introduction

In 1968, J. Nash initiated the study of the space of arcs  $X_{\infty}$  of a (singular) algebraic variety X with the purpose of understanding the resolutions of singularities of X. His work [9] was done shortly after the proof of resolution of singularities in characteristic zero by H. Hironaka [4].

Nash's starting point is the following: let X be a variety over a perfect field k and suppose that there exists a resolution of singularities  $\pi : Y \to X$ . For every irreducible component E of the exceptional locus of  $\pi$ , let us consider the Nash family of arcs  $N_E$  consisting of the Zariski closure of the image of the set of arcs on Y which are centered in some point of E. He observes that each  $N_E$  is irreducible and, moreover,  $N_E$  only depends on the divisorial valuation defined by E. Besides, due to the properness of  $\pi$ , every arc in  $X_{\infty} \setminus (\text{Sing } X)_{\infty}$  which is centered in some point of the singular locus of X belongs to some of the  $N_E$ 's. That is, the space of arcs  $X_{\infty}^{Sing}$  centered in Sing X decomposes as

$$X_{\infty}^{Sing} = \bigcup_E N_E \cup (\operatorname{Sing} X)_{\infty}.$$

From this, and arguing by induction on dim X, one deduces that the number of irreducible components of  $X_{\infty}^{Sing}$  is finite (see [9] or [5,10]).

Corresponding author. E-mail addresses: olivier.piltant@uvsq.fr (O. Piltant), areguera@agt.uva.es (A.J. Reguera).

 $\label{eq:http://dx.doi.org/10.1016/j.jpaa.2017.08.012} 0022-4049/© 2017$  Elsevier B.V. All rights reserved.

Please cite this article in press as: O. Piltant, A.J. Reguera, Local uniformization and arc spaces, J. Pure Appl. Algebra (2017), http://dx.doi.org/10.1016/j.jpaa.2017.08.012





#### 2

## ARTICLE IN PRESS

O. Piltant, A.J. Reguera / Journal of Pure and Applied Algebra ••• (••••) •••-•••

No other proof of the previous result is known until now. In particular, it is unknown whether the number of irreducible components of  $X_{\infty}^{Sing}$  is finite or not if char k = p > 0 and dim  $X \ge 4$ , since resolution of singularities is still an open problem in this situation. The purpose of this note is to prove that Hironaka's resolution of singularities can be substituted by the weaker notion of Zariski's generalized Local Uniformization along valuations in Nash's argument.

More precisely, let X be an irreducible variety over a perfect field k, and  $Z \subseteq X$  be a Zariski closed subset, let  $X_{\infty}^Z$  be the space of arcs on X centered at some point of Z. We consider valuation rings  $(\mathcal{O}_v, M_v, k_v)$  of the field of fractions k(X) of X. Say that  $LU(X, \zeta)$  holds for  $\zeta \in X$  an arbitrary point if for any valuation ring  $\mathcal{O}_v$  dominating  $\mathcal{O}_{X,\zeta}$ , there exists a finitely generated algebra

$$R = \mathcal{O}_{X,\zeta}[f_1, \dots, f_r] \subseteq \mathcal{O}_v$$

such that  $R_{M_v \cap R}$  is a regular local ring. We prove the following result:

**Main Result.** (Corollary 3.7) Let X|k be a k-variety (not necessarily irreducible) and  $Z \subseteq X$ . Assume that, for every  $z \in Z$  and for every irreducible subvariety  $V \subseteq X$  with  $z \in V$ , Local Uniformization holds on V at z, i.e. LU(V, z) holds. Then  $X_{\infty}^Z$  has a finite number of irreducible components.

The proof of this result relies heavily on concepts developed by Zariski (chapter VI of [12]) in his study of the space of valuation rings of a function field: composition of valuations, quasi-compactness, description of birational correspondence in terms of valuations.

## 2. Preliminaries

In this section we set the notation and recall some known properties of the space of arcs that will be used in this work. We then recall some basic facts from valuation theory: centers, domination and composition of valuations.

**2.1.** Arc spaces. Let k be a perfect field and let X be a variety over k, i.e. X is a reduced separated k-scheme of finite type. Let  $X_{\infty}$  denote the space of arcs of X: It is a k-scheme whose K-rational points are the K-arcs on X, i.e. the k-morphisms Spec  $K[[t]] \to X$ , for any field extension  $k \subseteq K$ . More precisely,  $X_{\infty} := \lim_{k \to \infty} X_n$  where, for  $n \in \mathbb{N}$ ,  $X_n$  is the k-scheme of finite type whose K-rational points are the K-arcs of order n on X, i.e. the k-morphisms Spec  $K[[t]]/(t)^{n+1} \to X$ .

For instance, the space of arcs of the affine space  $\mathbb{A}_k^N = \operatorname{Spec} k[x_1, \dots, x_N]$  is

$$(\mathbb{A}_k^N)_{\infty} = \operatorname{Spec} k[\underline{X}_0, \underline{X}_1, \dots, \underline{X}_n, \dots]$$

where for  $n \geq 0$ ,  $\underline{X}_n = (X_{1;n}, \ldots, X_{N;n})$  is an N-uple of variables. For any  $f \in k[x_1, \ldots, x_N]$ , let  $\sum_{n=0}^{\infty} F_n t^n$  be the formal series expansion of  $f(\sum_n \underline{X}_n t^n)$ , hence  $F_n \in k[\underline{X}_0, \ldots, \underline{X}_n]$ . If  $X \subseteq \mathbb{A}_k^N$  is affine, and  $I_X \subset k[x_1, \ldots, x_N]$  is the ideal defining X in  $\mathbb{A}_k^N$ , then we have  $X_\infty =$ Spec  $k[\underline{X}_0, \underline{X}_1, \ldots, \underline{X}_n, \ldots] / (\{F_n\}_{n\geq 0, f\in I_X})$ .

We denote by  $j_n : X_{\infty} \to X_n$ ,  $n \ge 0$ , the natural projections. We also denote by  $j : X_{\infty} \to X$  the projection  $j_0$ . Given a closed subset Z of X, we denote by  $X_{\infty}^Z$  the subscheme  $j^{-1}(Z)$  of  $X_{\infty}$ .

Given  $P \in X_{\infty}$ , with residue field  $\kappa(P)$ , we denote by  $h_P$ : Spec  $\kappa(P)[[t]] \to X$  the induced  $\kappa(P)$ -arc on X. The image  $x_0$  in X of the closed point of Spec  $\kappa(P)[[t]]$ , i.e.  $x_0 = j(P)$ , is called the *center* of P. The image  $x_\eta$  of the generic point of Spec  $\kappa(P)[[t]]$  is the generic point of Im  $h_P$ . Then,  $h_P$  induces a morphism of k-algebras  $h_P^{\sharp}: \mathcal{O}_{X,x_0} \to \kappa(P)[[t]]$ , or an injective morphism  $h_P^{\sharp}: \mathcal{O}_{\{x_\eta\},x_0} \to \kappa(P)[[t]]$ . We denote by  $v_P$ the function  $\operatorname{ord}_t h_P^{\sharp}: \mathcal{O}_{X,x_0} \to \mathbb{N} \cup \{\infty\}$ , which defines a valuation of  $k(x_\eta)$ .

The scheme  $X_{\infty}$  is not of finite type over k if dim X > 0. However it satisfies several finiteness properties. The following result refers to one of them. It is proved in [7] chap. IV, prop. 10 if char k = 0 and in [3] cor. 1.28, [10] th. 2.9 for any perfect field k.

Please cite this article in press as: O. Piltant, A.J. Reguera, Local uniformization and arc spaces, J. Pure Appl. Algebra (2017), http://dx.doi.org/10.1016/j.jpaa.2017.08.012

Download English Version:

# https://daneshyari.com/en/article/8897565

Download Persian Version:

https://daneshyari.com/article/8897565

Daneshyari.com