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Abstract

This paper continues the investigation of isotropy theory for toposes. We develop the
theory of isotropy quotients of toposes, culminating in a structure theorem for a class
of toposes we call locally anisotropic. The theory has a natural interpretation for in-
verse semigroups, which clarifies some aspects of how inverse semigroups and toposes are
related.

Keywords: Topos theory, Inverse semigroups
2010 MSC: 18B25, 18B40, 20M 18

1. Introduction

Isotropy theory for toposes [5] has its origins in the theory of inverse semigroups and
étale groupoids, emerging from an explanation of how the idempotent centralizer (§ 5.3)
of an inverse semigroup is a Morita invariant [6]. Indeed, every Grothendieck topos has
internal to it a canonical group object Z called its isotropy group [5]. This group classifies
isotropy in the sense that for any object X of a topos &, morphisms X — Z of & are in
natural bijection with natural automorphisms of the so-called étale geometric morphism

E/X —& (1)

associated with X . Such an isotropy automorphism is given by a natural automorphism
of its inverse image functor

X' 6—=&/X, X(E)=ExX — X,
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