Journal of Pure and Applied Algebra ••• (••••) •••-•••

FISEVIER

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Milnor K-theory of complete discrete valuation rings with finite residue fields

Christian Dahlhausen ¹

Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

ARTICLE INFO

ABSTRACT

Article history: Received 15 June 2017 Available online xxxx Communicated by C.A. Weibel Consider a complete discrete valuation ring \mathcal{O} with quotient field F and finite residue field. Then the inclusion map $\mathcal{O} \to F$ induces a map $\hat{K}_*^M \mathcal{O} \to \hat{K}_*^M F$ on improved Milnor K-theory. We show that this map is an isomorphism in degrees bigger or equal to 3. This implies the Gersten conjecture for improved Milnor K-theory for \mathcal{O} . This result is new in the p-adic case.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let \hat{K}_{*}^{M} denote the improved Milnor K-theory as introduced by GABBER [2] and mainly developed by KERZ [8]. For fields, it coincides with the usual Milnor K-theory. For $n \geq 1$ and a discrete valuation ring \mathcal{O} with quotient field F and residue field κ , there is the so-called Gersten complex

$$0 \longrightarrow \hat{K}_{n}^{M} \mathcal{O} \longrightarrow \hat{K}_{n}^{M} F \longrightarrow \hat{K}_{n-1}^{M} \kappa \longrightarrow 0.$$

This complex is known to be right-exact. Is it also exact on the left side? In the equicharacteristic case this was shown by Kerz [8, Prop. 10 (8)]. As a slight extension to a special case of the mixed characteristic case, we show the exactness on the left side by proving the following result (Theorem 4.2).

Theorem. Let \mathcal{O} be a complete discrete valuation ring with quotient field F and finite residue field. Then for $n \geq 3$ the inclusion map $\iota \colon \mathcal{O} \to F$ induces an isomorphism

$$\iota_* : \hat{\mathbf{K}}_n^{\mathbf{M}} \mathcal{O} \xrightarrow{\cong} \hat{\mathbf{K}}_n^{\mathbf{M}} F$$

on improved Milnor K-theory.

http://dx.doi.org/10.1016/j.jpaa.2017.07.002 0022-4049/ \odot 2017 Elsevier B.V. All rights reserved.

E-mail address: christian.dahlhausen@ur.de.

 $^{^{1}\,}$ The author is supported by the DFG GRK 1692 "Curvature, Cycles and Cohomology".

2

In the *p*-adic case this is new. We prove the theorem as follows: We show that $\hat{K}_n^M \mathcal{O}$ is a divisible abelian group for $n \geq 3$ (Theorem 3.7) using results from the appendix of MILNOR's book [11]. Combining this with the unique divisibility of $\hat{K}_n^M F$ (proved by SIVITSKII [14]) and a comparison between algebraic and Milnor K-theory (proved by NESTERENKO and SUSLIN [12]) yields the theorem.

Acknowledgements. I am grateful to my advisor Moritz Kerz for proposing me this interesting topic. Also, I thank Morten Lüders for useful comments and fruitful discussions and Thomas Fiore for having a look at the language. I want to thank my unknown referee from AKT (though my submission was finally declined). Their reports helped a lot in clarifying the presentation of this paper's content. Last, but not least, I thank Chuck Weibel for helpful comments on the presentation of the paper's content.

2. Milnor K-theory

Definition 2.1. Let A be a commutative ring with unit, T_*A^* be the (non-commutative) tensor algebra of A^* over \mathbb{Z} , and StR_*A^* the homogeneous ideal of T_*A^* which is generated by the set $\{x \otimes y \in T_2A^* \mid x+y=1\}$ (the so-called STEINBERG RELATIONS). Define the MILNOR K-THEORY of A to be the graded ring

$$K_*^M A := T_* A^* / \operatorname{StR}_* A^*.$$

For $x_1, \ldots, x_n \in A^{\times}$ let $\{x_1, \ldots, x_n\}$ denote the image of $x_1 \otimes \ldots \otimes x_n$ under the natural homomorphism $T_n A^{\times} \to K_n^M A$. Evidently, this yields a functor from commutative rings to abelian groups.

This notion behaves well if A is a field or a local ring with infinite residue field [7]. But some nice properties do not hold for arbitrary commutative rings (e.g. that the natural map to algebraic K-theory is an isomorphism in degree 2). For local rings, this lack is repaired by a generalisation due to GABBER [2], the improved Milnor K-theory, which was mainly developed by KERZ [8].

Definition 2.2. Let A be a local ring and $n \in \mathbb{N} := \mathbb{Z}_{\geq 0}$. The subset

$$S\coloneqq \big\{\sum_{i\in \mathbf{N}^n} a_{\underline{i}}\cdot \underline{t}^{\underline{i}}\in A[t_1,\ldots,t_n]\;\big|\; \big\langle a_{\underline{i}}\,|\,\underline{i}\in \mathbf{N}^n\big\rangle = A\big\}$$

of $A[t_1, \ldots, t_n]$ is multiplicatively closed, where $\underline{t}^{\underline{i}} = t_1^{i_1} \cdot \ldots \cdot t_n^{i_n}$. Define the RING OF RATIONAL FUNCTIONS (in n variables) to be $A(t_1, \ldots, t_n) := S^{-1}A[t_1, \ldots, t_n]$. We obtain maps $\iota: A \to A(t)$ and $\iota_1, \iota_2: A(t) \to A(t_1, t_2)$ by mapping t respectively to t_1 or t_2 .

For $n \ge 0$ we define the n-th improved Milnor K-theory of A to be

$$\hat{\mathbf{K}}_{n}^{\mathrm{M}} A \coloneqq \ker \left[\mathbf{K}_{n}^{\mathrm{M}} A(t) \xrightarrow{\delta_{n}^{\mathrm{M}}} \mathbf{K}_{n}^{\mathrm{M}} A(t_{1}, t_{2}) \right],$$

where $\delta_n^{\mathrm{M}} \coloneqq \mathrm{K}_n^{\mathrm{M}}(\iota_1) - \mathrm{K}_n^{\mathrm{M}}(\iota_2)$. By definition, we have an exact sequence

$$0 \longrightarrow \hat{\mathbf{K}}_n^{\mathrm{M}} A \xrightarrow{\iota_*} \mathbf{K}_n^{\mathrm{M}} A(t) \xrightarrow{\delta_n^{\mathrm{M}}} \mathbf{K}_n^{\mathrm{M}} A(t_1, t_2).$$

In particular, for n = 0 we have $\hat{K}_0^M = \ker(\mathbf{Z} \xrightarrow{0} \mathbf{Z}) = \mathbf{Z}$. As a direct consequence of the construction we obtain a natural homomorphism

$$K_*^M A \longrightarrow \hat{K}_*^M A.$$

We state some facts about Milnor K-theory of local rings.

Download English Version:

https://daneshyari.com/en/article/8897576

Download Persian Version:

https://daneshyari.com/article/8897576

Daneshyari.com