Differential uniformity and second order derivatives for generic polynomials

Yves Aubry ${ }^{\text {a,b }}$, Fabien Herbaut ${ }^{\text {a,c }}$
a Institut de Mathématiques de Toulon, Université de Toulon, France
b Aix-Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
c ESPE Nice-Toulon, Université Nice Sophia Antipolis, France

A R T I C L E I N F O

Article history:

Received 18 January 2016
Received in revised form 18 May
2017
Available online xxxx
Communicated by I.M. Duursma

MSC:

14G50; 11T71; 94A60

A B S T R A C T

For any polynomial f of $\mathbb{F}_{2^{n}}[x]$ we introduce the following characteristic of the distribution of its second order derivative, which extends the differential uniformity notion:

$$
\delta^{2}(f):=\max _{\substack{\alpha \in \mathbb{F}_{2^{n}}^{*}, \alpha^{\prime} \in \mathbb{F}_{2 n}^{*}, \beta \in \mathbb{F}_{2^{n}} \\ \alpha \neq \alpha^{\prime}}} \sharp\left\{x \in \mathbb{F}_{2^{n}} \mid D_{\alpha, \alpha^{\prime}}^{2} f(x)=\beta\right\}
$$

where $D_{\alpha, \alpha^{\prime}}^{2} f(x):=D_{\alpha^{\prime}}\left(D_{\alpha} f(x)\right)=f(x)+f(x+\alpha)+f\left(x+\alpha^{\prime}\right)+f\left(x+\alpha+\alpha^{\prime}\right)$ is the second order derivative. Our purpose is to prove a density theorem relative to this quantity, which is an analogue of a density theorem proved by Voloch for the differential uniformity.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For any polynomial $f \in \mathbb{F}_{q}[x]$ where $q=2^{n}$, and for $\alpha \in \mathbb{F}_{q}^{*}$, the derivative of f with respect to α is the polynomial $D_{\alpha} f(x)=f(x+\alpha)+f(x)$. The differential uniformity $\delta(f)$ of f introduced by Nyberg in [6] is then defined by

$$
\delta(f):=\max _{(\alpha, \beta) \in \mathbb{F}_{q}^{*} \times \mathbb{F}_{q}} \sharp\left\{x \in \mathbb{F}_{q} \mid D_{\alpha} f(x)=\beta\right\} .
$$

To stand against differential cryptanalysis, one wants to have a small differential uniformity (ideally equal to 2). Voloch proved that most polynomials f of $\mathbb{F}_{q}[x]$ of degree $m \equiv 0,3(\bmod 4)$ have a differential uniformity equal to $m-1$ or $m-2$ (Theorem 1 in [11]).

[^0]When studying differential cryptanalysis, Lai introduced in [5] the notion of higher order derivatives. The higher order derivatives are defined recursively by $D_{\alpha_{1}, \ldots, \alpha_{i+1}} f=D_{\alpha_{1}, \ldots, \alpha_{i}}\left(D_{\alpha_{i+1}} f\right)$, and a new design principle is given in [5]: "For each small i, the nontrivial i-th derivatives of function should take on each possible value roughly uniform". After considering the differential uniformity, it seems natural to investigate the number of solutions of the equation $D_{\alpha_{1}, \alpha_{2}} f(x)=\beta$, that is of the equation

$$
f(x)+f\left(x+\alpha_{1}\right)+f\left(x+\alpha_{2}\right)+f\left(x+\alpha_{1}+\alpha_{2}\right)=\beta
$$

and thus to consider the second order differential uniformity of f over \mathbb{F}_{q} :

$$
\delta^{2}(f):=\max _{\substack{\alpha \in \mathbb{F}_{q}^{*}, \alpha^{\prime} \in \mathbb{F}_{q}^{*}, \beta \in \mathbb{F}_{q} \\ \alpha \neq \alpha^{\prime}}} \sharp\left\{x \in \mathbb{F}_{q} \mid D_{\alpha, \alpha^{\prime}}^{2} f(x)=\beta\right\} .
$$

For example, the inversion mapping from \mathbb{F}_{q} to itself which sends x to x^{-1} if $x \neq 0$ and 0 to 0 (and which corresponds to the polynomial $f(x)=x^{q-2}$) has a differential uniformity $\delta(f)=2$ for n odd and $\delta(f)=4$ for n even (see [6]). We will prove in Section 8 that it has a second order differential uniformity $\delta^{2}(f)=8$ for any $n \geqslant 6$.

The purpose of the paper is to prove that, as Voloch proved it for the differential uniformity, most polynomials f have a maximal $\delta^{2}(f)$. More precisely, we prove (Theorem 7.1) that: for a given integer $m \geqslant 7$ such that $m \equiv 0(\bmod 8)\left(\right.$ respectively $m \equiv 1,2,7(\bmod 8)$), and with $\delta_{0}=m-4$ (respectively $\left.\delta_{0}=m-5, m-6, m-3\right)$ we have

$$
\lim _{n \rightarrow \infty} \frac{\sharp\left\{f \in \mathbb{F}_{2^{n}}[x] \mid \operatorname{deg}(f)=m, \delta^{2}(f)=\delta_{0}\right\}}{\sharp\left\{f \in \mathbb{F}_{2^{n}}[x] \mid \operatorname{deg}(f)=m\right\}}=1 .
$$

We follow and generalize the ideas of Voloch in [11]. Let us present the strategy.

- In Section 2, we associate to any integer m an integer d depending on the congruence of m modulo 4 (Definition 2.1). Then, if α and α^{\prime} are two distinct elements of \mathbb{F}_{q}^{*}, we associate (Proposition 2.2) to any polynomial $f \in \mathbb{F}_{q}[x]$ of degree m a polynomial $L_{\alpha, \alpha^{\prime}}(f)$ (which will be sometimes denoted by g for simplicity) of degree less than or equal to d such that:

$$
D_{\alpha, \alpha^{\prime}}^{2} f(x)=g\left(x(x+\alpha)\left(x+\alpha^{\prime}\right)\left(x+\alpha+\alpha^{\prime}\right)\right)
$$

- In Section 3, we determine the geometric and the arithmetic monodromy groups of $L_{\alpha, \alpha^{\prime}}(f)$ when this polynomial is Morse (Proposition 3.1). For α and α^{\prime} fixed, we give an upper bound depending only on m and q for the number of polynomials f of $\mathbb{F}_{q}[x]$ of degree at most m such that $L_{\alpha, \alpha^{\prime}}(f)$ is non-Morse (Proposition 3.2).
- Section 4 is devoted to the study of the monodromy groups of $D_{\alpha, \alpha^{\prime}}^{2} f$. In order to apply the Chebotarev's density theorem (Theorem 5.1) we look for a condition of regularity, that is a condition for \mathbb{F}_{q} to be algebraically closed in the Galois closure of the polynomial $D_{\alpha, \alpha^{\prime}}^{2} f(x)$ (Proposition 4.6).
- In Section 5, we use the Chebotarev theorem to prove that (Proposition 5.2) for q sufficiently large and under the regularity hypothesis the polynomial $D_{\alpha, \alpha^{\prime}}^{2} f(x)+\beta$ totally splits in $\mathbb{F}_{q}[x]$.
- In Section 6, we show that we can choose a finite set of couples ($\alpha_{i}, \alpha_{i}^{\prime}$) such that most polynomials $f \in \mathbb{F}_{q}[x]$ of degree m satisfy the above regularity condition (Proposition 6.1).
- Finally, Section 7 is devoted to the statement and the proof of the main theorem (Theorem 7.1).

To fix notation, throughout the whole paper we consider n a non-negative integer and $q=2^{n}$. We denote by \mathbb{F}_{q} the finite field with q elements, by $\mathbb{F}_{q}[x]$ the ring of polynomials in one variable over \mathbb{F}_{q} and by

https://daneshyari.com/en/article/8897596

Download Persian Version:

https://daneshyari.com/article/8897596

Daneshyari.com

[^0]: E-mail addresses: yves.aubry@univ-tln.fr (Y. Aubry), fabien.herbaut@unice.fr (F. Herbaut).
 http://dx.doi.org/10.1016/j.jpaa.2017.06.009
 0022-4049/© 2017 Elsevier B.V. All rights reserved.

