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For any polynomial f of F2n [x] we introduce the following characteristic of the 
distribution of its second order derivative, which extends the differential uniformity 
notion:

δ2(f) := max
α∈F

∗
2n ,α′∈F

∗
2n ,β∈F2n

α�=α′

�{x ∈ F2n | D2
α,α′f(x) = β}

where D2
α,α′f(x) := Dα′ (Dαf(x)) = f(x) + f(x + α) + f(x + α′) + f(x + α + α′) is 

the second order derivative. Our purpose is to prove a density theorem relative to 
this quantity, which is an analogue of a density theorem proved by Voloch for the 
differential uniformity.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For any polynomial f ∈ Fq[x] where q = 2n, and for α ∈ F
∗
q , the derivative of f with respect to α is the 

polynomial Dαf(x) = f(x + α) + f(x). The differential uniformity δ(f) of f introduced by Nyberg in [6] is 
then defined by

δ(f) := max
(α,β)∈F∗

q×Fq

�{x ∈ Fq | Dαf(x) = β}.

To stand against differential cryptanalysis, one wants to have a small differential uniformity (ideally equal 
to 2). Voloch proved that most polynomials f of Fq[x] of degree m ≡ 0, 3 (mod 4) have a differential 
uniformity equal to m − 1 or m − 2 (Theorem 1 in [11]).
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When studying differential cryptanalysis, Lai introduced in [5] the notion of higher order derivatives. 
The higher order derivatives are defined recursively by Dα1,...,αi+1f = Dα1,...,αi

(Dαi+1f), and a new design 
principle is given in [5]: “For each small i, the nontrivial i-th derivatives of function should take on each 
possible value roughly uniform”. After considering the differential uniformity, it seems natural to investigate 
the number of solutions of the equation Dα1,α2f(x) = β, that is of the equation

f(x) + f(x + α1) + f(x + α2) + f(x + α1 + α2) = β

and thus to consider the second order differential uniformity of f over Fq:

δ2(f) := max
α∈F

∗
q ,α

′∈F
∗
q ,β∈Fq

α�=α′

�{x ∈ Fq | D2
α,α′f(x) = β}.

For example, the inversion mapping from Fq to itself which sends x to x−1 if x �= 0 and 0 to 0 (and which 
corresponds to the polynomial f(x) = xq−2) has a differential uniformity δ(f) = 2 for n odd and δ(f) = 4
for n even (see [6]). We will prove in Section 8 that it has a second order differential uniformity δ2(f) = 8
for any n � 6.

The purpose of the paper is to prove that, as Voloch proved it for the differential uniformity, most 
polynomials f have a maximal δ2(f). More precisely, we prove (Theorem 7.1) that: for a given integer 
m � 7 such that m ≡ 0 (mod 8) (respectively m ≡ 1, 2, 7 (mod 8)), and with δ0 = m − 4 (respectively 
δ0 = m − 5, m − 6, m − 3) we have

lim
n→∞

�{f ∈ F2n [x] | deg(f) = m, δ2(f) = δ0}
�{f ∈ F2n [x] | deg(f) = m} = 1.

We follow and generalize the ideas of Voloch in [11]. Let us present the strategy.

– In Section 2, we associate to any integer m an integer d depending on the congruence of m modulo 4 
(Definition 2.1). Then, if α and α′ are two distinct elements of F∗

q , we associate (Proposition 2.2) to 
any polynomial f ∈ Fq[x] of degree m a polynomial Lα,α′(f) (which will be sometimes denoted by g for 
simplicity) of degree less than or equal to d such that:

D2
α,α′f(x) = g

(
x(x + α)(x + α′)(x + α + α′)

)
.

– In Section 3, we determine the geometric and the arithmetic monodromy groups of Lα,α′(f) when this 
polynomial is Morse (Proposition 3.1). For α and α′ fixed, we give an upper bound depending only on 
m and q for the number of polynomials f of Fq[x] of degree at most m such that Lα,α′(f) is non-Morse 
(Proposition 3.2).

– Section 4 is devoted to the study of the monodromy groups of D2
α,α′f . In order to apply the Chebotarev’s 

density theorem (Theorem 5.1) we look for a condition of regularity, that is a condition for Fq to be 
algebraically closed in the Galois closure of the polynomial D2

α,α′f(x) (Proposition 4.6).
– In Section 5, we use the Chebotarev theorem to prove that (Proposition 5.2) for q sufficiently large and 

under the regularity hypothesis the polynomial D2
α,α′f(x) + β totally splits in Fq[x].

– In Section 6, we show that we can choose a finite set of couples (αi, α′
i) such that most polynomials 

f ∈ Fq[x] of degree m satisfy the above regularity condition (Proposition 6.1).
– Finally, Section 7 is devoted to the statement and the proof of the main theorem (Theorem 7.1).

To fix notation, throughout the whole paper we consider n a non-negative integer and q = 2n. We denote 
by Fq the finite field with q elements, by Fq[x] the ring of polynomials in one variable over Fq and by 
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