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We classify the 6-dimensional Lie algebras of the form g ×g that admit an integrable 
complex structure. We also endow a Lie algebra of the kind o(n) × o(n) (n ≥ 2) 
with such a complex structure. The motivation comes from geometric structures 
à la Sasaki on g-manifolds.
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1. Introduction

A complex structure on a Lie algebra h is an endomorphism J : h → h such that J 2 = −id. It corresponds 
to a left invariant almost complex structure on any Lie group H with TeH = h. We say that a complex 
structure J on h is integrable if

N(v, w) := [v, w] + J [J v, w] + J [v,Jw] − [J v,Jw] = 0

for any v, w ∈ h. By the Newlander–Nirenberg theorem, via a left invariant trivialisation of the tangent 
bundle of H, this condition is likewise equivalent to the integrability of the corresponding left invariant 
almost complex structure on H.

Classification of integrable complex structures on real Lie algebras is a well established problem, cf. 
a summary of results on their existence in [9]. In dimension 6, the question is settled only for special – 
abelian – complex structures, cf. [1], and for nilpotent algebras, cf. [2,7]. The present paper focuses on a 
different class of 6-dimensional Lie algebras that split as a product g × g for a 3-dimensional Lie algebra g. 
We identify all such algebras admitting integrable complex structures. This problem was studied in the 
special cases of o(3) × o(3) and sl(2, R) × sl(2, R) by Magnin in [4,5], where he also classified all possible 
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integrable complex structures. Such a complete description will not be our concern here, but we note that 
the classification given in [2] covers types (1), (2), and (3) of our Proposition 1.

Our main motivation comes from differential geometry. As explained in detail in [3], the existence of 
complex structures on 6-dimensional product algebras has immediate applications to the recently developed 
theory of non-abelian, higher-dimensional structures à la Sasaki. To get an idea of the problem, consider 
a 3-dimensional Lie group G acting freely on an odd-dimensional manifold M . Suppose that this action 
preserves some transverse complex structure – a complex structure on the sub-bundle ν transverse to the 
orbits. We cannot hope to extend this complex structure to the whole tangent bundle – since the dimension 
is odd – but an interesting problem is to extend it to the T (M ×G). Since the tangent space at a point x in 
that product splits (as a vector space) Tx (M ×G) = νx×g ×g, this rises – and reduces to – the question of 
finding an integrable complex structure on g ×g. Then the transverse complex structure on M can be studied 
in terms of an ordinary complex structure on M×G. Recall that a manifold S is Sasakian if its Riemannian 
cone S × R is Kähler – and thus the above approach is a starting point for natural generalisations.

We point out that an integrable complex structure on its Lie algebra does not turn a Lie group into a 
complex Lie group. In fact, every compact Lie group of even dimension admits an integrable left invariant 
complex structure, cf. [8,10], while it is well-known that only tori can be compact complex Lie groups.

In the last section we provide an explicit integrable complex structure for every algebra of the type 
o(n) × o(n).

2. Complex structures on 6-dimensional product algebras

Recall that the 3-dimensional Lie algebras were classified into 9 types by Bianchi. We use a variant, 
a classification from [6] by the dimension of the derived algebra and Jordan decomposition of certain 
automorphism acting upon it. We include the statement for convenience.

Proposition 1. [6] Let e1, e2 and e3 be a basis of R3. Up to isomorphism of Lie algebras, the following list 
yields all Lie brackets on R3

(1) [e1, e3] = 0, [e2, e3] = 0, [e1, e2] = 0
(2) [e1, e3] = 0, [e2, e3] = 0, [e1, e2] = e1
(3) [e1, e3] = 0, [e2, e3] = 0, [e1, e2] = e3
(4) [e1, e3] = e1, [e2, e3] = θe2, [e1, e2] = 0 for θ �= 0 (the case θ = 1 is considered to be Bianchi’s ninth 

type)
(5) [e1, e3] = e1, [e2, e3] = e1 + e2, [e1, e2] = 0
(6) [e1, e3] = θe1 − e2, [e2, e3] = e1 + θe2, [e1, e2] = 0 for θ �= 0
(7) [e1, e3] = e2, [e2, e3] = e1, [e1, e2] = e3
(8) [e1, e3] = −e2, [e2, e3] = e1, [e1, e2] = e3

We fix some notation. Whenever we write (x, y, z) ∈ g, it is understood in the appropriate basis above. 
If any other basis {u, v, w} is used, we write Xu + Y v + Zw.

The direct product g ×g inherits the bracket operation on each factor from g: [(u, v), (t, s)] = ([u, t], [v, s]). 
We keep the distinction between the two copies of g inside g ×g by adding asterisks to the second copy. Any 
vector decorated with an asterisk is understood to lie in g∗ = 0 × g, while those without it lie in g = g × 0. 
We tacitly use the natural isomorphism between the two copies, (v, 0)∗ = (0, v). We also distinguish the two 
components of a complex structure J – it will be convenient to work with J and J∗ as in J v = (Jv, J∗v)
to indicate its g- and g∗-parts separately. As a rule, virtually every vector on which we act in the lengthy 
proofs lies in g.

To finish the preliminaries we note the following to use frequently in what follows.
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