[Journal of Pure and Applied Algebra](http://dx.doi.org/10.1016/j.jpaa.2017.05.012) ••• (••••) •••-•••

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

On integrally closed simple extensions of valuation rings \mathbb{R}

Anuj Jakhar, Sudesh K. Khanduja ∗, Neeraj Sangwan

Indian Institute of Science Education and Research (IISER), Mohali Sector-81, S. A. S. Nagar-140306, Punjab, India

A R T I C L E I N F O A B S T R A C T

Article history: Received 11 May 2016 Received in revised form 18 April 2017 Available online xxxx Communicated by V. Suresh

MSC: 12J10; 12J25; 11R29

Let *v* be a Krull valuation of a field with valuation ring R_v . Let θ be a root of an irreducible trinomial $F(x) = x^n + ax^m + b$ belonging to $R_v[x]$. In this paper, we give necessary and sufficient conditions involving only a, b, m, n for $R_v[\theta]$ to be integrally closed. In the particular case when *v* is the *p*-adic valuation of the field Q of rational numbers, $F(x) \in \mathbb{Z}[x]$ and $K = \mathbb{Q}(\theta)$, then it is shown that these conditions lead to the characterization of primes which divide the index of the subgroup $\mathbb{Z}[\theta]$ in A_K , where A_K is the ring of algebraic integers of K . As an application, it is deduced that for any algebraic number field *K* and any quadratic field *L* not contained in *K*, we have $A_{KL} = A_K A_L$ if and only if the discriminants of K and L are coprime. © 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let *R* be an integrally closed domain and θ be an element of an integral domain containing *R* with *θ* integral over *R*. The question "when is $R[\theta]$ integrally closed" has inspired many mathematicians (cf. [\[1,8,9,13\]\)](#page--1-0). This problem is closely related with the existence of a power basis of an algebraic number field. Recall that a power basis of an algebraic number field *K* is a Z-basis of the ring of algebraic integers of *K* consisting of powers of a single element; indeed θ would be such an element if and only if $\mathbb{Z}[\theta]$ is integrally closed in its quotient field *K*. If *A^K* denotes the ring of algebraic integers of an algebraic number field $K = \mathbb{Q}(\theta)$ with θ an algebraic integer and $\mathbb{Z}_{(p)}$ denotes the localization of Z at a nonzero prime ideal $p\mathbb{Z}$, then using Lagrange's theorem and Cauchy's theorem for finite groups, it can be easily seen that a prime *p* does not divide $[A_K : \mathbb{Z}[\theta]]$ if and only if $A_K \subseteq \mathbb{Z}_{(p)}[\theta]$ which is the same as saying that $\mathbb{Z}_{(p)}[\theta]$ is integrally closed. In 1878, Dedekind gave a necessary and sufficient criterion to be satisfied by the minimal polynomial $F(x)$ of θ over $\mathbb Q$ so that $p \nmid [A_K : \mathbb Z[\theta]]$. He proved that if $\overline{F}(x) = \overline{g}_1(x)^{e_1} \cdots \overline{g}_t(x)^{e_t}$ is the factorization of

* Corresponding author.

Please cite this article in press as: A. Jakhar et al., On integrally closed simple extensions of valuation rings, J. Pure Appl. Algebra (2017), http://dx.doi.org/10.1016/j.jpaa.2017.05.012

JPAA:5681

[✩] The financial support from IISER Mohali is gratefully acknowledged by the authors. The second author is also thankful to Indian National Science Academy for the fellowship.

E-mail addresses: anujjakhar@iisermohali.ac.in (A. Jakhar), skhanduja@iisermohali.ac.in (S.K. Khanduja), neerajsan@iisermohali.ac.in (N. Sangwan).

<http://dx.doi.org/10.1016/j.jpaa.2017.05.012>

^{0022-4049/©} 2017 Elsevier B.V. All rights reserved.

2 *A. Jakhar et al. / Journal of Pure and Applied Algebra ••• (••••) •••–•••*

the polynomial $\overline{F}(x)$ obtained by replacing coefficients of $F(x)$ modulo p as a product of powers of distinct irreducible polynomials over $\mathbb{Z}/p\mathbb{Z}$ with $g_i(x)$ monic, then $\mathbb{Z}_{(p)}[\theta]$ is integrally closed if and only if for each *i*, either $e_i = 1$ or $\bar{g}_i(x) \nmid \overline{M}(x)$, where $M(x) = \frac{1}{p}(F(x) - \prod_{i=1}^{t}$ $\prod_{i=1} g_i(x)^{e_i}$ (see [2, [Theorem](#page--1-0) 6.1.4], [\[3\]\)](#page--1-0). As $\mathbb{Z}_{(p)}$ is the valuation ring of the *p*-adic valuation of rationals, the above criterion gives a motivation to investigate when is a simple ring extension of a valuation ring integrally closed (see $[4]$ for valuations). In 2006, Ershov (cf. [\[5,9\]\)](#page--1-0) extended this criterion to arbitrary valuation rings and proved the following:

Theorem 1.A *(Generalized Dedekind Criterion). Let v be a Krull valuation of arbitrary rank of a field with* valuation ring R_n, having maximal ideal M_n. For $q(x) \in R_n[x]$, let $\overline{q}(x)$ denote the polynomial obtained on replacing each coefficient of $g(x)$ by its image under the canonical homomorphism from R_v onto R_v/M_v . Let $F(x) \in R_n[x]$ be a monic irreducible polynomial having a root θ in its splitting field and $\overline{F}(x) =$ $\bar{g}_1(x)^{e_1} \cdots \bar{g}_t(x)^{e_t}$ be the factorization of $\bar{F}(x)$ into a product of powers of distinct irreducible polynomials over R_v/M_v with $g_i(x) \in R_v[x]$ monic. Then $R_v[\theta]$ is integrally closed if and only if either $e_i = 1$ for each *i* or some $e_i > 1$, in which case M_v is a principal ideal say generated by π and $\bar{g}_i(x)$ does not divide $\overline{M}(x)$ *for such an index j*, *where* $M(x) = \frac{1}{\pi}(F(x) - g_1(x)^{e_1} \cdots g_t(x)^{e_t}).$

In this paper, we use the above theorem to give necessary and sufficient conditions involving a, b, m, n for $R_v[\theta]$ to be integrally closed when θ is a root of an irreducible trinomial¹ $F(x) = x^n + ax^m + b$ belonging to $R_v[x]$. In what follows, v, R_v, M_v are as in Theorem 1.A. For an element α belonging to R_v , $\bar{\alpha}$ will denote its image under the canonical homomorphism from R_v onto R_v/M_v . When a polynomial $g(x)$ belongs to $R_v[x]$, $\bar{g}(x)$ will have the same meaning as in Theorem 1.A. We shall denote by *D* the discriminant of the trinomial $F(x) = x^n + ax^m + b$. It is known (cf. [\[12\]\)](#page--1-0) that

$$
D = (-1)^{{n \choose 2}} b^{m-1} [b^{n_1 - m_1} n^{n_1} - (-1)^{n_1} a^{n_1} m^{m_1} (n - m)^{n_1 - m_1}]^{d_0}
$$
\n
$$
(1)
$$

where $d_0 = \gcd(m, n)$, $n_1 = \frac{n}{d_0}$, $m_1 = \frac{m}{d_0}$. In this paper, we prove

Theorem 1.1. Let v be a Krull valuation of arbitrary rank of a field having valuation ring R_v , maximal ideal M_v and perfect residue field. Let p denote the characteristic of the residue field R_v/M_v in case it is positive. Let θ be a root of a monic irreducible trinomial $F(x) = x^n + ax^m + b$ belonging to $R_v[x]$ and d_0, m_1, n_1, D be as above. Assume² that $v(D) > 0$. Then $R_v[\theta]$ is integrally closed if and only if M_v is a principal ideal *say generated by π and one of the following conditions is satisfied:*

- (*i*) when a, b belong to M_v , then $v(b) = v(\pi)$;
- (ii) when $a \in M_v$ and $b \notin M_v$ with $j \ge 1$ as the highest power of p dividing n, then either $v(a_2) \ge v(\pi)$ and $v(b_1) = 0$ or $v(a_2) = 0 = v((-b)^{m_1}a_2^{n_1} - (-b_1)^{n_1})$, where $a_2 = \frac{a}{\pi}$, b' is an element of R_v satisfying $(\bar{b'})^{p^j} = \bar{b}$ *and* $b_1 = \frac{1}{\pi}(b + (-b')^{p^j});$
- (iii) *when* $a \notin M_v$, $b \in M_v$ *and* $v(n-m) = 0$, *then* $v(b) = v(\pi)$;
- (iv) when $a \notin M_v$, $b \in M_v$ and $v(n-m) > 0$ with $l \ge 1$ as the highest power of p dividing $n-m$, then either $v(a_1) \ge v(\pi)$ and $v(b_2) = 0$ or $v(a_1) = 0 = v(b_2^{m-1} [(-a)^{m_1} (a_1)^{n_1-m_1} - (-b_2)^{n_1-m_1}])$, where $a_1 = \frac{1}{\pi}(a + (-a')^{p^l}), b_2 = \frac{b}{\pi}, a'$ belonging to R_v satisfies $(a')^{p^l} = \overline{a}$,
- (v) when $ab \notin M_v$ and $m \in M_v$ with $n = s'p^k$, $m = sp^k$, p does not divide $gcd(s', s)$, then the polynomials $x^{s'}+ax^s+b$ and $\frac{1}{\pi}[ax^{sp^k}+b+(-a'x^s-b')^{p^k}]$ are coprime modulo M_v , where a',b' are in R_v satisfying $(\bar{a'})^{p^k} = \bar{a}, \ (\bar{b'})^{p^k} = \bar{b}$;

¹ We deal with only trinomials in this paper because they are a fairly tractable class of polynomials having a simple formula for discriminant.

² If $v(D) = 0$, then $\overline{F}(x)$ has no repeated factor and hence $R_v[\theta]$ is integrally closed by Theorem 1.A.

Download English Version:

<https://daneshyari.com/en/article/8897619>

Download Persian Version:

<https://daneshyari.com/article/8897619>

[Daneshyari.com](https://daneshyari.com)