Curves and envelopes that bound the spectrum of a matrix

Göran Bergqvist
Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

A R T I C L E I N F O

Article history:

Received 2 November 2016
Accepted 20 July 2018
Available online 24 July 2018
Submitted by M. Tsatsomeros

MSC:

15A18
15A42
15A60
65 F 15

Keywords:
Spectrum localization
Eigenvalue inequalities
Envelope
Numerical range

Abstract

A generalization of the method developed by Adam, Psarrakos and Tsatsomeros to find inequalities for the eigenvalues of a complex matrix A using knowledge of the largest eigenvalues of its Hermitian part $H(A)$ is presented. The numerical range or field of values of A can be constructed as the intersection of half-planes determined by the largest eigenvalue of $H\left(e^{i \theta} A\right)$. Adam, Psarrakos and Tsatsomeros showed that using the two largest eigenvalues of $H(A)$, the eigenvalues of A satisfy a cubic inequality and the envelope of such cubic curves defines a region in the complex plane smaller than the numerical range but still containing the spectrum of A. Here it is shown how using the three largest eigenvalues of $H(A)$ or more, one obtains new inequalities for the eigenvalues of A and new envelope-type regions containing the spectrum of A.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we denote by $\mathcal{M}_{n, k}(\mathbb{C})$ and $\mathcal{M}_{n, k}(\mathbb{R})$ the spaces of complex and real $n \times k$ matrices respectively; $\mathcal{M}_{n}(\mathbb{C})$ and $\mathcal{M}_{n}(\mathbb{R})$ stand for $k=n$. The spectrum $\sigma(A)$ of a matrix $A \in \mathcal{M}_{n}(\mathbb{C})$ is known to be located in its numerical range or field of values

[^0]$F(A)=\left\{\mathbf{x}^{*} A \mathbf{x} \in \mathbb{C} ; \mathbf{x} \in \mathbb{C}^{n},\|\mathbf{x}\|_{2}=1\right\}$. The spectrum of A is also located to the left of the vertical line $\operatorname{Re}(z)=\delta_{1}$ in the complex plane, where δ_{1} is the largest eigenvalue of the Hermitian part $H(A)=\frac{1}{2}\left(A+A^{*}\right)$ of A. Here A^{*} denotes the Hermitian conjugate of A. Also, $S(A)=\frac{1}{2}\left(A-A^{*}\right)$ denotes the skew-Hermitian part of A, so $A=H(A)+S(A)$.

Clearly $F(A)=e^{-i \theta} F\left(e^{i \theta} A\right)$ for any $\theta \in\left[0,2 \pi\left[\right.\right.$, so $e^{i \theta} F(A)$ is located to the left of the vertical line $\operatorname{Re}(z)=\lambda_{\max }\left(H\left(e^{i \theta} A\right)\right.$), and rotating this line by $e^{-i \theta}$ we get a new line that bounds $\sigma(A)$. In fact, $[2,3], F(A)$ is obtained exactly as the connected, compact and convex region defined by the envelope of all such lines. In the first subfigure of Fig. 1 we have illustrated this for the Toeplitz matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & i \tag{1}\\
2 & 1 & 1 & 0 \\
3 & 2 & 1 & 1 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

by plotting these lines for $\theta=2 \pi m / 120, m=0, \ldots, 119$. The eigenvalues of A are marked by small boxes in the figure.

In [1] Adam and Tsatsomeros showed how one can use the two largest eigenvalues δ_{1} and δ_{2} of $H(A)$ and the eigenvector \mathbf{u}_{1} of $H(A)$ corresponding to δ_{1}, to obtain an improved inequality for $\sigma(A)$. Let $\alpha=\operatorname{Im}\left(\mathbf{u}_{1}^{*} S(A) \mathbf{u}_{1}\right)$ and $K_{1}=\left\|S(A) \mathbf{u}_{1}\right\|_{2}^{2}-\alpha^{2} \geq 0$. Then they proved that any $\lambda \in \sigma(A)$ satisfies

$$
\begin{equation*}
\left|\lambda-\left(\delta_{1}+i \alpha\right)\right|^{2}\left(\operatorname{Re}(\lambda)-\delta_{2}\right) \leq K_{1}\left(\delta_{1}-\operatorname{Re}(\lambda)\right) \tag{2}
\end{equation*}
$$

With equality in (2) we have a curve $\Gamma_{1}(A)$ that bounds $\sigma(A)$ and is of degree 3 in the real and imaginary parts of λ. Applied to $H\left(e^{i \theta} A\right)$ one can repeat the argument above and obtain rotated cubic curves that bound $\sigma(A)$. The envelope of such curves was studied extensively by Psarrakos and Tsatsomeros [5,6] and they showed that it bounds a region $\mathcal{E}_{1}(A)$ that contains $\sigma(A)$ and is compact, but which is not always convex or connected. In the second subfigure of Fig. 1 we show their image [5] of $\mathcal{E}_{1}(A)$ for the Toeplitz matrix A in (1). Again we used 120 curves, with $\theta=2 \pi m / 120, m=0, \ldots, 119$, for the plot.

The aim of this paper is to generalize the results of Adam, Psarrakos and Tsatsomeros by using the k largest eigenvalues of $H(A)$ to obtain new curves $\Gamma_{k}(A)$ that bound $\sigma(A)$. As a preview of our results, we show in the third subfigure of Fig. 1 the region $\mathcal{E}_{2}(A)$ obtained from the envelope of curves when the three largest eigenvalues of $H(A)$ are utilized for the Toeplitz matrix A in (1). Also here 120 curves are used to construct the figure.

In Section 2 we derive the main inequality for the eigenvalues of a matrix, with respect to the largest eigenvalues and corresponding eigenvectors of its Hermitian part. We also state a more explicit formulation for the case of three known eigenvalues, and present some illustrations and analyze properties of the curves that bound the spectrum. In Section 3 we analyze explicitly some cases where the curves have special properties. Then, in Section 4, we demonstrate how an envelope of such curves encloses a region

https://daneshyari.com/en/article/8897652

Download Persian Version:

https://daneshyari.com/article/8897652

Daneshyari.com

[^0]: E-mail address: gober@mai.liu.se.

